

De opslag en bevraging van evoluerende kennisgrafen op het web

Storing and Querying Evolving Knowledge Graphs on the Web

Ruben Taelman

Promotoren: prof. dr. ir. R. Verborgh, dr. M. Vander Sande
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Elektronica en Informatiesystemen
Voorzitter: prof. dr. ir. K. De Bosschere

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2019 - 2020

ISBN 978-94-6355-341-4
NUR 988
Wettelijk depot: D/2020/10.500/18

Examination Board
Prof. Antoon Bronselaer
Dr. Olaf Hartig, Docent
Prof. Katja Hose
Prof. Erik Mannens
Prof. Femke Ongenae

Chair
Prof. Filip De Turck

Advisors
Prof. Ruben Verborgh
Dr. Miel Vander Sande

Preface
For as long as I can remember, making things has been my greatest passion. As I was for-
tunate enough to grow up with computers around me, I quickly became fascinated by
them, and their ability to automate processes through sequences of instructions. Next to
that, I was born at the perfect time to experience the introduction of the Web to the pub-
lic. Hence, I grew up together with it, which has impacted my life significantly. Thanks
to the Web, I was able to easily access information on computers, programming, and
Web technologies. This allowed me to learn, and to create new things.
As a teenager, I was never really the type of person that played a lot of video games.
Nevertheless, like most people of my generation, I often came in contact with them. In-
stead of being captivated to play these games, I was often intrigued by the way these
games worked. This caused me to ponder on their internal processes, and wondering what
it would take to make it myself. As such, I occasionally set out to implement or extend
certain games. The thing I enjoyed the most, however, was building things that connect
people over the Web, which is why I also spent quite some time building Web sites to
distribute games and broadcast music.
After I graduated secondary school, the obvious choice was to pursue a further education
related to computers and programming, which is how I ended up at Ghent University.
The most impactful year for me was the final year of my Master’s, which is when I
worked on my thesis. Because of my existing interest in Web technologies, I chose for a
topic in the Semantic Web domain. Under the excellent supervision of Ruben Verborgh
and Pieter Colpaert, I investigated continuous querying within the Semantic Web. Due to
the motivating guidance of Ruben and Pieter, and my interest in the domain, I continued
upon that research as a PhD topic, and became their colleague at Multimedia Lab.
Working at Multimedia Lab, Data Science Lab, IDLab has been very exciting so far. I
came in contact with many new interesting people, learned about new technologies, and
traveled around the world. Most importantly, I was able to (at least slightly) advance the
research domain through the contributions that are described in this PhD thesis. All of
this was of course impossible without standing on the shoulders of giants. These giants
are on the one hand all researchers that my work builds upon, and on the other hand
everyone that has directly or indirectly supported this work.
I thank all my current and past IDLab colleagues from our Semantic Web office: Anasta-
sia, Ben, Brecht, Dieter D. P., Dieter D. W., Dörthe, Erik, Gerald, Harm, Julián, Joachim,
Laurens, Martin, Miel, Pieter H., Pieter C., Ruben, Sven, Tom. Each of them has shaped
this research in one way or another. Either by providing feedback, coming up with new
ideas that inspired me, or by simply offering help when I needed it. In particular, I thank

Ruben and Miel for their tireless enthusiasm and motivation. I was able to learn a lot
from you, which has definitely helped me in becoming a better researcher. I am grateful
to both Ruben and Pieter C. for inviting me to pursue a PhD at IDLab, it has influenced
my life in a very positive way, and I can not dream of a better job. I am also thankful of
all the critical and constructive feedback Ruben, Miel, Pieter and Anastasia have given
me. Last but not least, I thank the examination board Antoon Bronselaer, Olaf Hartig,
Katja Hose, Erik Mannens, Femke Ongenae and Filip De Turck for their critical analysis
and comments on this dissertation.
I thank my family for being there all my life, and shaping me into the person I have be-
come. Mom and dad, thank you being there, for all the time and effort you have spent in
me, and all the opportunities you have provided, I love you both. Finally, Elke, I love you
for showing me the sides of life that were unknown to me, and I am glad to be living it
with you.

Ruben
August 2019

Table of Contents
1. Introduction

1. The Web
1. Catalysts for Human Progress
2. Impact of the Web
3. Knowledge Graphs
4. Evolving Knowledge Graphs
5. Decentralized Knowledge Graphs

2. Research Question
3. Outline
4. Publications

2. Generating Synthetic Evolving Data
1. Introduction
2. Related Work
3. Public Transit Background

1. Public Transit Planning
2. Transit Feed Formats

4. Research Question
5. Method

1. Region
2. Stops
3. Edges
4. Routes
5. Trips

6. Implementation
1. PoDiGG
2. PoDiGG-LC
3. Configuration

7. Evaluation
1. Coherence
2. Distance to Gold Standards
3. Performance
4. Dataset size

8. Discussion
1. Characteristics

2. Usage within Benchmarks
3. Limitations and Future Work
4. PoDiGG In Use

9. Conclusions

3. Storing Evolving Data
1. Introduction
2. Related Work

1. General
2. RDF Archiving
3. RDF Archiving Benchmarks
4. Query atoms

3. Problem statement
4. Overview of Approaches

1. Snapshot and Delta Chain
2. Multiple Indexes
3. Local Changes
4. Addition and Deletion counts

5. Hybrid Multiversion Storage
1. Snapshot storage
2. Delta Chain Dictionary
3. Delta Storage
4. Addition Counts
5. Deletion Counts
6. Metadata

6. Changeset Ingestion Algorithms
1. Batch Ingestion
2. Streaming Ingestion

7. Versioned Query Algorithms
1. Version Materialization
2. Delta Materialization
3. Version Query

8. Evaluation
1. Implementation
2. Experimental Setup
3. Results
4. Discussion

9. Conclusions

4. Querying a heterogeneous Web
1. Introduction
2. Related Work

1. The Different Facets of SPARQL
2. Linked Data Fragments

3. Software Design Patterns
3. Requirement analysis

1. SPARQL query evaluation
2. Modularity
3. Heterogeneous interfaces
4. Federation
5. Web-based

4. Architecture
1. Customizable Wiring at Design-time through Dependency Injection
2. Flexibility at Run-time using the Actor–Mediator–Bus Pattern
3. Modules

5. Implementation
6. Performance Analysis
7. Conclusions

5. Querying Evolving Data
1. Introduction
2. Related Work

1. RDF Annotations
2. Temporal data in the
3. SPARQL Streaming Extensions
4. Triple Pattern Fragments

3. Problem Statement
4. Use Case
5. Dynamic Data Representation

1. Time Labeling Types
2. Methods for Time Annotation

6. Query Engine
1. Architecture
2. Algorithms

7. Evaluation
1. Server Cost
2. Client Cost
3. Annotation Methods

8. Conclusions
1. Server cost
2. Client cost
3. Caching
4. Request reduction
5. Performance
6. Annotation methods

9. Addendum
1. Formalization
2. Evaluation

6. Conclusions
1. Contributions

1. Generating Evolving Data
2. Indexing Evolving Data
3. Heterogeneous Web Interfaces
4. Publishing and Querying Evolving Data
5. Overview

2. Limitations
1. Generating Evolving Data
2. Indexing Evolving Data
3. Heterogeneous Web Interfaces
4. Publishing and Querying Evolving Data

3. Open Challenges

Acronyms

API Application Programming Interface

BEAR Benchmark of rdf Archives

C-SPARQL Continuous SPARQL

CB Change-based

CM Change Materialization

CQELS Continuous Query Evaluation over Linked Stream

CPU Central Processing Unit

CSV Comma Separated Values

CV Cross-version Join

CVS Concurrent Versions System

DM Delta Materialization

DSMS Data Stream Management System

GTFS General Transit Feed Specification

HDT-FoQ HDT Focus on Querying

HDT Header Dictionary Triples

HOBBIT Holistic Benchmarking of Big Linked Data

HTTP Hypertext Transfer Protocol

IC Independent Copies

IRI Internationalized Resource Identifier

LUBM Lehigh University Benchmark

OSTRICH Offset-Enabled Triple Store for Changesets

PoDiGG POpulation DIstribution-based GTFS Generator

RAM Random Access Memory

RDF Resource Description Framework

SPARQL SPARQL Protocol and RDF Query Language

TB Timestamp-based

TPF Triple Pattern Fragments

VM Version Materialization

VTPF Versioned Triple Pattern Fragments

VQ Version Query

Summary
Over the last 30 years, the Web has significantly enhanced the way we share information,
which has lead to major transformations of our society. Initially, information on the Web
was targeted at humans, and machines had a difficult time understanding information on
the Web in the same way as humans can. This hindered intelligent agents in performing
certain tasks autonomously, such as finding all stores that sell a certain product in your
current area, or determining the time to leave for catching your flight on time based on
the current traffic and weather conditions. To enable such intelligent agents, researchers
have been investigating technologies and introducing standards for making the Web un-
derstandable for machines. In the recent years, these technologies are being used to build
so-called knowledge graphs, which are collections of structured information to support
intelligent agents such as Siri and Google Assistant.
Most research on knowledge graphs has focused on static data. However, there is a huge
amount of evolving data available, such as traffic events from highway sensors or contin-
uous heart rate measurements. There is a lot of value in evolving knowledge, such as for
example the ability to determine daily busy traffic periods, or sending alerts when the
heart rate is too high for an unexpectedly long period of time. As such, it is important to
store this information in evolving knowledge graphs, and to make it searchable.
Just like the Web, knowledge graphs are continuously becoming more and more central-
ized, which means that information becomes increasingly more in the hands of a few
large entities. This leads to information only having limited availability for the public,
which endangers the democratic and decentralized nature of the Web. Events in recent
years have shown that centralizing information at this scale is problematic, as it leads to
issues such as censorship and manipulation of information. For these reasons, there is an
ongoing effort to re-decentralize the Web, to make the Web a democratic platform again
by giving back the power to the people. As such, an underlying focus within my research
is to enable this decentralization and democratization of information on the Web, in the
form of knowledge graphs.
To facilitate the usage of evolving knowledge graphs, the goal of this PhD is allowing
evolving knowledge graphs to be published and queried on the Web. To investigate
this topic, I focus on four challenges related to this topic. First, to allow systems that han-
dle evolving knowledge graphs to be evaluated, I look into the generation of evolving
data. Second, I investigate methods to store evolving data, so that the data can be pub-
lished and queried on the Web efficiently. Third, I design a flexible system to query vari-
ous kinds of data on the Web. Finally, I investigate methods for publishing and querying
evolving data on the Web. In the scope of this PhD, I consider slowly evolving knowl-

edge graphs that update with a periodicity in the order of minutes or slower, because
faster periodicities as required for stream processing require significantly different tech-
nical requirements. Below, I will explain the four challenges in more detail.
In order to properly evaluate systems that handle evolving knowledge graphs, one must
first have evolving knowledge graphs to test these systems with. As existing evolving
knowledge graphs are limited to having only specific sizes, they are unsuited for the
needs of extensive system evaluations, where configurable evolving knowledge graph
sizes are required. This is why this first challenge focuses on the generation of evolving
data, as a prerequisite to the next challenges. Concretely, I designed an algorithm to gen-
erate synthetic public transport network datasets, based on population distributions as in-
put. I provide an implementation of this algorithm, and evaluated it in terms of realism
and performance. Results show that this algorithm is valuable for evaluating systems that
handle evolving knowledge graphs, while still guaranteeing that the datasets are suffi-
ciently realistic with respect to real-world analogues.
The second challenge focuses on investigating a Web-friendly trade-off between storage
size and query efficiency for evolving knowledge graphs. For this, I designed a storage
approach that can index evolving data, and I developed accompanying algorithms for
querying over this evolving data in an efficient manner. The index is based on a hybrid
between different kinds of storage mechanisms, to enable efficient lookups for different
temporal access patterns. The query algorithms supports offsets and limits, to enable ran-
dom access to subsets of query results, which is important for Web-friendly query inter-
faces. Based on my implementation of this storage approach and querying algorithms,
experimental results show that this system achieves a trade-off between storage size and
query efficiency that is useful for hosting evolving knowledge graphs on the Web. Con-
cretely, query execution time is reduced at the cost of an increase in storage size. This
cost is acceptable due to storage typically being cheap.
In the third challenge, the heterogeneous nature of the Web is investigated. Concretely, I
designed a query engine (Comunica) that can query over various kinds of Web interfaces,
based on different kinds of query algorithms. The engine is designed in a modular way,
so that new interfaces and algorithms can be developed and plugged in flexibly. This also
allows different approaches to be compared fairly, which makes it a useful research
platform.
Finally, the last challenge ties everything together, and focuses on publishing evolving
data on the Web via a queryable interface. Concretely, I introduced a query interface for
evolving data, and a client-side algorithm for continuous querying over this interface in a
polling-based manner. This is done by annotating evolving data server-side with predeter-
mined expiration times, so that clients can determine the optimal polling frequency, and
non-expired data can be reused when other more volatile data expires. Results show that
this approach achieves a lower server load compared to fully server-side continuous
query engines, at the cost of an increase in execution time and bandwidth usage.
Within these four challenges, methods are designed to allow evolving knowledge graphs
to be stored and queried in a Web-friendly way. Concretely, evolving knowledge graphs
can be stored in the hybrid storage system from challenge two. On top of this, a low-cost
temporal Web interface can be setup such as the one designed for the fourth challenge,

which can then be queried client-side to reduce server load as seen in challenge three and
four. All of this can then be evaluated using synthetic evolving knowledge graphs as gen-
erated with the algorithm from challenge one.
While this PhD shows a way to store and query evolving knowledge graphs on the Web,
there does not exist a single perfect way to achieve this, and different trade-offs exist for
different solutions. For example, storing evolving knowledge graphs over small, slowly
evolving IoT sensors may involve restricted storage capabilities. On the other hand, high-
ly volatile and sensitive sensors within nuclear reactor infrastructure may require massive
storage capabilities. In the future, more research will be needed to come up with tech-
niques to store and query these various kinds of evolving knowledge graphs on the Web.

Samenvatting
In de afgelopen 30 jaar heeft het Web de manier waarop we informatie delen significant
bevorderd, wat geleid heeft tot grote transformaties van onze samenleving. Origineel was
informatie op het Web bedoeld voor mensen, en machines hadden het moeilijk om deze
informatie te verwerken op dezelfde manier als mensen. Dit hinderde intelligente assis-
tenten om bepaalde taken autonoom uit te voeren, zoals bijvoorbeeld alle winkels vinden
die een bepaald product verkopen in jouw huidige omgeving, of bepalen wanneer het tijd
is om te vertrekken om een vlucht te halen gebaseerd op de huidige verkeerssituatie en
het weer. Om deze intelligente assistenten mogelijk te maken hebben onderzoekers gew-
erkt aan technologieën en standaarden om het Web begrijpbaar te maken voor machines.
In de voorbije jaren worden kennisgrafen gebouwd op basis van deze technologieën om
intelligente assistenten zoals Siri en Google Assistant deze taken te kunnen laten
uitvoeren.
Het meeste onderzoek in de context van kennisgrafen is gefocust op statische gegevens.
Er is echter een grote hoeveelheid evoluerende gegevens beschikbaar, zoals verkeersdata
van snelweg sensoren of continue hartslag metingen. Er zit veel waarde vervat zit in
evoluerende kennis zoals bijvoorbeeld het bepalen van drukke dagelijkse momenten op
de snelweg, of meldingen sturen wanneer de hartslag te hoog blijft voor onverwacht
lange perioden. Daarom is het belangrijk om deze informatie op te slaan in evoluerende
kennisgrafen, en om deze doorzoekbaar te maken.
Net zoals het Web, worden kennisgrafen meer en meer gecentraliseerd, wat betekent dat
informatie meer en meer in de handen komt van enkele grote entiteiten. Dit leidt tot een
beperkte beschikbaarheid van informatie voor het publiek, waardoor de democratische en
gedecentraliseerde eigenschappen van het Web in het gedrang komen. Gebeurtenissen in
de afgelopen jaren hebben aangetoond dat de centralisatie van informatie op deze schaal
problematisch is, aangezien het leidt tot problemen zoals censuur en manipulatie van in-
formatie. Om deze redenen is er een voortgaande inspanning om het Web opnieuw te de-
centraliseren, en om het Web opnieuw een democratisch platform te maken door de
macht terug te geven aan de mensen. Aldus is decentralisatie en democratisering van in-
formatie op het Web in de vorm van kennisgrafen een onderliggende focus van mijn
onderzoek.
Om het gebruik van evoluerende kennisgrafen te vergemakkelijken, is het doel van dit
doctoraat om het mogelijk te maken om evoluerende kennisgrafen te publiceren en
bevragen op het Web. Om dit onderwerp te onderzoeken focus ik op vier uitdagingen
gerelateerd aan dit onderwerp. Ten eerste, om systemen die evoluerende kennisgrafen be-
heren te evalueren, kijk ik naar de generatie van evoluerende gegevens. Ten tweede on-

derzoek ik manieren om evoluerende gegevens op te slaan, zodat gegevens efficiënt op
het Web gepubliceerd en bevraagd kunnen worden. Ten derde ontwerp ik een flexibel
systeem om verschillende soorten gegevens te bevragen op het Web. Tot slot onderzoek
ik manieren om evoluerende gegevens te publiceren en bevragen op het Web. In de con-
text van dit doctoraat ga ik uit van traag evoluerende kennisgrafen die veranderen met
een periodiciteit in de orde van minuten of trager, omdat snellere periodiciteiten zoals rel-
evant binnen stream processing beduidend andere technische vereisten nodig hebben. Hi-
erna zal ik de vier uitdagingen in meer detail uitleggen.
Om op een degelijke manier systemen te evalueren die evoluerende kennisgrafen be-
heren, is het nodig om eerst evoluerende kennisgrafen te hebben om deze systemen mee
te testen. Aangezien bestaande evoluerende kennisgrafen beperkt zijn tot specifieke
groottes, zijn deze niet geschikt voor de noden van uitgebreide systeemevaluaties waar
configureerbare groottes van evoluerende kennisgrafen nodig zijn. Dit is waarom de
eerste uitdaging focust op de generatie van evoluerende gegevens, als een vereiste voor
de volgende uitdagingen. Concreet ontwerp ik een algoritme om synthetische datasets
over het openbaar vervoer te genereren, gebaseerd op populatie distributies als invoer.
Dit algoritme is geïmplementeerd en geëvalueerd in termen van realiteit en prestatie. Re-
sultaten tonen aan dat dit algoritme nuttig is voor de evaluatie van systemen die
evoluerende kennisgrafen beheren, met de garantie dat datasets voldoende representatief
zijn ten opzichte van de echte wereld.
De tweede uitdaging focust op het onderzoek van een Web-vriendelijke afweging tussen
opslagruimte en opzoek efficiëntie voor evoluerende kennisgrafen. Hiervoor ontwierp ik
een opslagtechniek die in staat is om evoluerende gegevens te indexeren, en samenhorige
algoritmes werden ontwikkeld voor het doorzoeken van evoluerende gegevens op een ef-
ficiënte manier. Deze index is gebaseerd op een hybride van verschillende soorten op-
slagtechnieken, om verschillende temporele toegangspatronen efficiënt te maken. De
zoekalgoritmen ondersteunen startafstanden en limieten, om willekeurige toegang tot
deelverzamelingen van zoekresultaten mogelijk te maken, wat belangrijk is voor een
Web-vriendelijke zoek toegang. Gebaseerd op een implementatie van deze opslagtech-
niek en zoekalgoritmen, tonen experimentele resultaten aan dat dit systeem er in slaagt
om een afweging te bereiken tussen opslagruimte en opzoek efficiëntie die waardevol is
voor het plaatsen van evoluerende kennisgrafen op het Web. Concreet worden zoektijden
gereduceerd ten koste van een toename in opslagruimte. Deze kost is acceptabel
aangezien opslag meestal vrij goedkoop is.
In de derde uitdaging wordt de heterogeniteit van het Web onderzocht. Concreet ontwierp
ik een zoekmachine (Comunica) die in staat is om te zoeken over verschillende soorten
Web toegangen, gebaseerd op verschillende zoekalgoritmen. De zoekmachine is ontwor-
pen op een modulaire manier, zodat nieuwe soorten Web toegangen en algoritmen on-
twikkeld en ingeplugd kunnen worden op een flexibele manier. Dit maakt het mogelijk
om verschillende Web toegangen en algoritmen op een eerlijke manier met elkaar te
vergelijken, wat dit een nuttig onderzoeksplatform maakt.
Tot slot verbindt de laatste uitdaging alle voorgaande uitdagingen met elkaar, en focust
op de publicatie van evoluerende gegevens op het Web via een doorzoekbare toegang.
Concreet introduceerde ik een doorzoekbare toegang voor evoluerende gegevens, en een

algoritme aan de client-zijde voor de continue bevraging over deze toegang op een her-
halende manier. Dit wordt gedaan door evoluerende gegevens te annoteren met bepaalde
vervaltijden, zo dat cliënten de optimale opzoekfrequentie kunnen bepalen, en dat niet-
vervallen gegevens kunnen worden hergebruikt wanneer meer vluchtige gegevens ver-
vallen. Resultaten tonen aan dat deze manier er in slaagt om een lagere belasting van de
server te bereiken in vergelijking met een continue zoekmachine die volledig aan de
server zijde draait, ten koste van een toename in uitvoeringstijd en bandbreedte.
In deze vier uitdagingen werden technieken ontwikkeld om evoluerende kennisgrafen op
te slaan en te bevragen op een Web-vriendelijke manier. Concreet kan dit worden gedaan
door evoluerende kennisgrafen op te slaan in een hybride systeem van de tweede uitdag-
ing. Hier bovenop kan een Web toegang worden opgezet zoals deze ontworpen in de
vierde uitdaging, welke bevraagd kan worden van de klantzijde om server belasting te
verlagen zoals gedaan wordt in uitdaging drie en vier. Deze kunnen allemaal worden geë-
valueerd met behulp van synthetische evoluerende kennisgrafen die gegenereerd kunnen
worden met het algoritme van de eerste uitdaging.
Alhoewel dit onderzoek een manier aantoont om evoluerende kennisgrafen op te slaan en
te bevragen op het Web, bestaan er verschillende afwegingen voor verschillende
toepassingen. Bijvoorbeeld, evoluerende kennisgrafen opslaan over kleine, traag
evoluerende sensoren in het internet der dingen, kunnen beperkt zijn in opslagruimte.
Aan de andere kant kunnen zeer vluchtige en gevoelige sensoren in nucleaire reactoren
een zeer grote opslagruimte vereisen. In de toekomst zal meer onderzoek nodig zijn om
technieken te onderzoeken om het mogelijk maken om verschillende soorten evoluerende
kennisgrafen op te slaan en te bevragen op het Web.

Chapter 1.
Introduction

1.1. The Web

1.1.1. Catalysts for Human Progress
Since the dawn of mankind, biological evolution has shaped us into social creatures. The
social capabilities of humans are however much more evolved than most other species.
For example, humans are one of the only animals that have clearly visible eye whites.
This allows people to see what other people are looking at, which simplifies collabora-
tive tasks. Furthermore, theory of mind, the ability to understand that others have differ-
ent perspectives, is much more pronounced in humans than in other animals, which also
strengthens our ability to collaborate. While our collaborative capabilities were initially
limited to physical tasks, the adoption of language and writing allowed us to share
knowledge with each other.
Methods for sharing knowledge are essential catalysts for human progress, as shared
knowledge allows larger groups of people to share goals and accomplish tasks that would
have been impossible otherwise. Due to our technological progress, the bandwidth of
these methods for sharing knowledge is always growing broader, which is continuously
increasing the rate of human and technological progress.
Throughout the last centuries, we saw three major revolutions in bandwidth. First, the in-
vention of the printing press in the 15th century drastically increased rate at which books
could be duplicated. Second, there was the invention of radio and television in the 20th
century. As audio and video are cognitively less demanding than reading, this lowered the
barrier for spreading knowledge even further. Third, we had the development of the inter-
net near the end of the 20th century, and the invention of the World Wide Web in 1989 on
top of that, which gave us a globally interlinked information space. Like the inventions
before, the Web is fully open and decentralized, where anyone can say anything about
anything. With the Web, bandwidth for knowledge sharing has become nearly unlimited,
as knowledge no longer has to go through a few large radio or tv stations, but can now be
shared over a virtually unlimited amount of Web pages, which leads to a more social hu-
man species.

20

1.1.2. Impact of the Web
At the time of writing, the Web is 30 years old. Considering our species is believed to be
300,000 years old, this is just 0.01% of the time we have been around. To put this in per-
spective in terms of a human life, the Web would only be a baby of just under 3 days old,
assuming a life expectancy of 80 years. This means that the Web just got started, and it
will take a long time for it to mature and to achieve its full potential.
Even in this short amount of time, the Web has already transformed our world in an un-
precedented way. Most importantly, it has given more than 56% of the global population
access to most of all human knowledge behind a finger’s touch. Secondly, social media
has enabled people to communicate with anyone on the planet near-instantly, and even
with multiple people at the same time. Furthermore, it has impacted politics and even
caused oppressive regimes to be overthrown. Next to that, it is also significantly disrupt-
ing businesses models that have been around since the industrial revolution, and creating
new ones.

1.1.3. Knowledge Graphs
The Web has made a positive significant impact on the world. Yet, the goal of curiosity-
driven researchers is to uncover what the next steps are to improve the world even more.
In 2001, Tim Berners-Lee shared his dream [1] where machines would be able to help
out with our day-to-day tasks by analyzing data on the Web and acting as intelligent
agents. Back then, the primary goal of the Web was to be human-readable. In order for
this dream to become a reality, the Web had to become machine-readable. This Web ex-
tension is typically referred to as the Semantic Web.
Now, almost twenty years later, several standards and technologies have been developed
to make this dream a reality. In 2013, more than four million Web domains were already
using these technologies. Using these Semantic Web technologies, so-called knowledge
graphs are being constructed by many major companies world-wide, such as Google and
Microsoft. A knowledge graph [2] is a collection of structured information that is orga-
nized in a graph. These knowledge graphs are being used to support tasks that were part
of Tim Berners-Lee’s original vision, such as managing day-to-day tasks with the Google
Now assistant.
The standard for modeling knowledge graphs is the Resource Description Framework
(RDF) [3]. Fundamentally, it is based around the concept of triples that are used to make
statements about things. A triple is made up of a subject, predicate and object, where the
subject and object are resources (or things), and the predicate denotes their relationship.
For example, Fig. 1 shows a simple triple indicating the nationality of a person. Multiple
resources can be combined with each other through multiple triples, which forms a
graph. Fig. 2 shows an example of such a graph, which contains knowledge about a per-
son. In order to look up information within such graphs, the SPARQL query language [4]
was introduced as a standard. Essentially, SPARQL allows RDF data to be looked up

21

through combinations of triple patterns, which are triples where any of its elements can
be replaced with variables such as ?name. For example, Listing 1 contains a SPARQL
query that finds the names of all people that Alice knows.

1.1.4. Evolving Knowledge Graphs
Within Big Data, we talk about the four V’s: volume, velocity, variety and veracity. As
the Web meets these three requirements, it can be seen as a global Big Dataset. Specifi-
cally, the Web is highly volatile, as it is continuously evolving, and it does so at an in-
creasing rate. For example, Google is processing more than 40,000 search requests every
second, 500 hours of video are being uploaded to YouTube every minute, and more than
5,000 tweets are being sent every second.
A lot of research and engineering work is needed to make it possible to handle this evolv-
ing data. For instance, it should be possible to store all of this data as fast as possible, and
to make it searchable for knowledge as soon as possible. This is important, as there is a
lot of value in evolving knowledge. For example, by tracking the evolution of biomedical
information, the spread of diseases can be reduced, and by observing highway sensors,
traffic jams may be avoided by preemptively rerouting traffic.
Due to the (RDF) knowledge graph model currently being atemporal, the usage of evolv-
ing knowledge graphs remains limited. As such, research and engineering effort is need-
ed for new models, storage techniques, and query algorithms for evolving knowledge
graphs. That is why evolving knowledge graphs are the main focus of my research.

Fig. 1: A triple indicating that Alice knows Bob.

Fig. 2: A small knowledge graph about Alice.

SELECT ?name WHERE {
 Alice knows ?person.
 ?person name ?name.
}

Listing 1: A SPARQL query selecting the names of all people that Alice knows. The
single result of this query would be "Bob". Full URIs are omitted in this example.

22

1.1.5. Decentralized Knowledge Graphs
As stated by Tim Berners-Lee, the Web is for everyone. This means that the Web is a free
platform (as in freedom, not free beer), where anyone can say anything about anything,
and anyone can access anything that has been said. This is directly compatible with Arti-
cle 19 of the Universal Declaration of Human Rights, which says the following:

Everyone has the right to freedom of opinion and expression; this right includes free-
dom to hold opinions without interference and to seek, receive and impart information
and ideas through any media and regardless of frontiers.

The original Web standards and technologies have been designed with this fundamental
right in mind. However, over the recent years, the Web has been growing towards more
centralized entities, where this right is being challenged.
The current centralized knowledge graphs do not match well with the original decentral-
ized nature of the Web. At the time of writing, these new knowledge graphs are in the
hands of a few large corporations, and intelligent agents on top of them are restricted to
what these corporations allow them to do. As people depend on the capabilities of these
knowledge graphs, large corporations gain significant control over the Web. In the last
couple of years, these centralized powers have proven to be problematic, for example
when the flow of information is redirected to influence election results, when personal
information is being misused, or when information is being censored due to idealogical
differences. This shows that our freedom of expression is being challenged by these large
centralized entities, as there is clear interference of opinions through redirection of the
information flow, and obstruction to receive information through censorship.
For these reasons, there is a massive push for re-decentralizing the Web, where people
regain ownership of their data. Decentralization is however a technologically difficult
thing, as applications typically require a single centralized entrypoint from which data is
retrieved, and no such single entrypoint exist in a truly decentralized environment. As
people do want ownership of their data, they do not want to give up their intelligent
agents. As such, this decentralization wave requires significant research effort to achieve
the same capabilities as these centralized knowledge graphs, which is why this is an im-
portant factor within my research. Specifically, I focus on supporting knowledge graphs
on the Web, instead of only being available behind closed doors, so that they are available
for everyone.

1.2. Research Question
The goal of my research is to allow people to publish and find knowledge without having
to depend on large centralized entities, with a focus on knowledge that evolves over time.
This lead me to the following research question for my PhD:

How to store and query evolving knowledge graphs on the Web?
During my research, I focus on four main challenges related to this research question:

23

1. Experimentation requires representative evolving data.
In order to evaluate the performance of systems that handle evolving knowledge
graphs, a flexible method for obtaining such data needs to be available.
2. Indexing evolving data involves a trade-off between storage efficiency and
lookup efficiency.
Indexing techniques are used to improve the efficiency of querying, but comes at the
cost of increased storage space and preprocessing time. As such, it is important to
find a good balance between the amount of storage space with its indexing time,
and the amount of querying speedup, so that evolving data can be stored in a Web-
friendly way.
3. Web interfaces are highly heterogeneous.
Before knowledge graphs can be queried from the Web, different interfaces through
which data are available, and different algorithms with which data can be retrieved
need to be combinable.
4. Publishing evolving data via a queryable interface involves continuous up-
dates to clients.
Centralized querying interfaces are hard to scale for an increasing number of con-
current clients, especially when the knowledge graphs that are being queried over
are continuously evolving, and clients need to be notified of data updates continu-
ously. New kinds of interfaces and querying algorithms are needed to cope with this
scalability issue.

1.3. Outline
Corresponding to my four research challenges, this thesis bundles the following four
peer-reviewed publications as separate chapters, for which I am the lead author:

Ruben Taelman et al. Generating Public Transport Data based on Population Distri-
butions for RDF Benchmarking.
In: In Semantic Web Journal. IOS Press, 2019.
Ruben Taelman et al. Triple Storage for Random-Access Versioned Querying of
RDF Archives.
In: Journal of Web Semantics. Elsevier, 2019.
Ruben Taelman et al. Comunica: a Modular SPARQL Query Engine for the Web.
In: International Semantic Web Conference. Springer, October 2018.
Ruben Taelman et al. Continuous Client-side Query Evaluation over Dynamic
Linked Data.
In: The Semantic Web: ESWC 2016 Satellite Events, Revised Selected Papers.
Springer, May 2016.

In Chapter 2, a mimicking algorithm (PoDiGG) is introduced for generating realistic
evolving public transport data, so that it can be used to benchmark systems that work
with evolving data. This algorithm is based on established concepts for designing public
transport networks, and takes into account population distributions for simulating the
flow of vehicles. Next, in Chapter 3, a storage architecture and querying algorithms are

24

introduced for managing evolving data. It has been implemented as a system called OS-
TRICH, and extensive experimentation shows that this system introduces a useful trade-
off between storage size and querying efficiency for publishing evolving knowledge
graphs on the Web. In Chapter 4, a modular query engine called Comunica is introduced
that is able to cope with the heterogeneity of data on the Web. This engine has been de-
signed to be highly flexible, so that it simplifies research within the query domain, where
new query algorithms can for example be developed in a separate module, and plugged
into the engine without much effort. In Chapter 5, a low-cost publishing interface and ac-
companying querying algorithm (TPF Query Streamer) is introduced and evaluated to
enable continuous querying of evolving data with a low volatility. Finally, this work is
concluded in Chapter 6 and future research opportunities are discussed.

1.4. Publications
This section provides a chronological overview of all my publications to international
conferences and scientific journals that I worked on during my PhD. For each of them, I
briefly explain their relationship to this dissertation.
2016

Ruben Taelman, Ruben Verborgh, Pieter Colpaert, Erik Mannens, Rik Van de
Walle. Continuously Updating Query Results over Real-Time Linked Data. Pub-
lished in proceedings of the 2nd Workshop on Managing the Evolution and Preser-
vation of the Data Web. CEUR-WS, May 2016.
Workshop paper that received the best paper award at MEPDaW 2016. Because of
this, an extended version was published as well: “Continuous Client-Side Query
Evaluation over Dynamic Linked Data”.
Ruben Taelman. Continuously Self-Updating Query Results over Dynamic Hetero-
geneous Linked Data. Published in The Semantic Web. Latest Advances and New
Domains: 13th International Conference, ESWC 2016, Heraklion, Crete, Greece,
May 29 – June 2, 2016.
PhD Symposium paper in which I outlined the goals of my PhD.
Ruben Taelman, Ruben Verborgh, Pieter Colpaert, Erik Mannens, Rik Van de
Walle. Moving Real-Time Linked Data Query Evaluation to the Client. Published in
proceedings of the 13th Extended Semantic Web Conference: Posters and Demos.
Accompanying poster of “Continuously Updating Query Results over Real-Time
Linked Data”.
Ruben Taelman, Ruben Verborgh, Pieter Colpaert, Erik Mannens. Continuous
Client-Side Query Evaluation over Dynamic Linked Data. Published in The Seman-
tic Web: ESWC 2016 Satellite Events, Heraklion, Crete, Greece, May 29 – June 2,
2016, Revised Selected Papers.
Extended version of “Continuously Updating Query Results over Real-Time Linked
Data”. Included in this dissertation as Chapter 5
Ruben Taelman, Pieter Colpaert, Ruben Verborgh, Pieter Colpaert, Erik Mannens.
Multidimensional Interfaces for Selecting Data within Ordinal Ranges. Published in
proceedings of the 7th International Workshop on Consuming Linked Data.

25

Introduction of an index-based server interface for publishing ordinal data. I
worked on this due to the need of a generic interface for exposing data with some
kind of order (such as temporal data), which I identified in the article “Continuous-
ly Updating Query Results over Real-Time Linked Data”.
Ruben Taelman, Pieter Heyvaert, Ruben Verborgh, Erik Mannens. Querying Dy-
namic Datasources with Continuously Mapped Sensor Data. Published in proceed-
ings of the 15th International Semantic Web Conference: Posters and Demos.
Demonstration of the system introduced in “Continuously Updating Query Results
over Real-Time Linked Data”, when applied to a thermometer that continuously
produces raw values.
Pieter Heyvaert, Ruben Taelman, Ruben Verborgh, Erik Mannens. Linked Sensor
Data Generation using Queryable RML Mappings. Published in proceedings of the
15th International Semantic Web Conference: Posters and Demos.
Counterpart of the demonstration “Querying Dynamic Datasources with Continu-
ously Mapped Sensor Data” that focuses on explaining the mappings from raw val-
ues to RDF.
Ruben Taelman, Ruben Verborgh, Erik Mannens. Exposing RDF Archives using
Triple Pattern Fragments. Published in proceedings of the 20th International Confer-
ence on Knowledge Engineering and Knowledge Management: Posters and Demos.
Poster paper in which I outlined my future plans to focus on the publication and
querying of evolving knowledge graphs through a low-cost server interface.

2017
Anastasia Dimou, Pieter Heyvaert, Ruben Taelman, Ruben Verborgh. Modeling,
Generating, and Publishing Knowledge as Linked Data. Published in Knowledge
Engineering and Knowledge Management: EKAW 2016 Satellite Events, EKM and
Drift-an-LOD, Bologna, Italy, November 19–23, 2016, Revised Selected Papers
(2017).
Tutorial in which I presented techniques for publishing and querying knowledge
graphs.
Ruben Taelman, Ruben Verborgh, Tom De Nies, Erik Mannens. PoDiGG: A Public
Transport RDF Dataset Generator. Published in proceedings of the 26th In-
ternational Conference Companion on World Wide Web (2017).
Demonstration of the PoDiGG system for which the journal paper “Generating
Public Transport Data based on Population Distributions for RDF Benchmarking”
was under submission at that point.
Ruben Taelman, Miel Vander Sande, Ruben Verborgh, Erik Mannens. Versioned
Triple Pattern Fragments: A Low-cost Linked Data Interface Feature for Web
Archives. Published in proceedings of the 3rd Workshop on Managing the Evolution
and Preservation of the Data Web (2017).
Introduction of a low-cost server interface for publishing evolving knowledge
graphs.

26

Ruben Taelman, Miel Vander Sande, Ruben Verborgh, Erik Mannens. Live Storage
and Querying of Versioned Datasets on the Web. Published in proceedings of the
14th Extended Semantic Web Conference: Posters and Demos (2017).
Demonstration of the interface introduced in “Versioned Triple Pattern Fragments:
A Low-cost Linked Data Interface Feature for Web Archives”.
Joachim Van Herwegen, Ruben Taelman, Sarven Capadisli, Ruben Verborgh. De-
scribing configurations of software experiments as Linked Data. Published in pro-
ceedings of the First Workshop on Enabling Open Semantic Science (SemSci)
(2017).
Introduction of techniques for semantically annotating software experiments. This
work offered a basis for the article on “Comunica: a Modular SPARQL Query En-
gine for the Web” which was in progress by then.
Ruben Taelman, Ruben Verborgh. Declaratively Describing Responses of Hyper-
media-Driven Web APIs. Published in proceedings of the 9th International Confer-
ence on Knowledge Capture (2017).
Theoretical work on offering techniques for distinguishing between different hyper-
media controls. This need was identified when working on “Versioned Triple Pattern
Fragments: A Low-cost Linked Data Interface Feature for Web Archives”.

2018
Julián Andrés Rojas Meléndez, Brecht Van de Vyvere, Arne Gevaert, Ruben Tael-
man, Pieter Colpaert, Ruben Verborgh. A Preliminary Open Data Publishing Strate-
gy for Live Data in Flanders. Published in proceedings of the 27th International
Conference Companion on World Wide Web.
Comparison of pull-based and push-based strategies for querying evolving knowl-
edge graphs within client-server environments.
Ruben Taelman, Miel Vander Sande, Ruben Verborgh. OSTRICH: Versioned Ran-
dom-Access Triple Store. Published in proceedings of the 27th International Confer-
ence Companion on World Wide Web.
Demonstration of “Triple Storage for Random-Access Versioned Querying of RDF
Archives” that was under submission at that point.
Ruben Taelman, Miel Vander Sande, Ruben Verborgh. Components.js: A Semantic
Dependency Injection Framework. Published in proceedings of the The Web Con-
ference: Developers Track.
Introduction of a dependency injection framework that was developed for “Comuni-
ca: a Modular SPARQL Query Engine for the Web”.
Ruben Taelman, Miel Vander Sande, Ruben Verborgh. Versioned Querying with
OSTRICH and Comunica in MOCHA 2018. Published in proceedings of the 5th
SemWebEval Challenge at ESWC 2018.
Experimentation on the combination of the systems from “Comunica: a Modular
SPARQL Query Engine for the Web” and “Triple Storage for Random-Access Ver-
sioned Querying of RDF Archives”, which both were under submission at that point.

27

Ruben Taelman, Pieter Colpaert, Erik Mannens, Ruben Verborgh. Generating Pub-
lic Transport Data based on Population Distributions for RDF Benchmarking. Pub-
lished in Semantic Web Journal.
Journal publication on PoDiGG. Included in this dissertation as Chapter 2.
Ruben Taelman, Miel Vander Sande, Joachim Van Herwegen, Erik Mannens,
Ruben Verborgh. Triple Storage for Random-Access Versioned Querying of RDF
Archives. Published in Journal of Web Semantics.
Journal publication on OSTRICH. Included in this dissertation as Chapter 3.
Ruben Taelman, Riccardo Tommasini, Joachim Van Herwegen, Miel Vander
Sande, Emanuele Della Valle, Ruben Verborgh. On the Semantics of TPF-QS to-
wards Publishing and Querying RDF Streams at Web-scale. Published in proceed-
ings of the 14th International Conference on Semantic Systems.
Follow-up work on “Continuous Client-Side Query Evaluation over Dynamic
Linked Data”, in which more extensive benchmarking was done, and formalisations
were introduced.
Ruben Taelman, Hideaki Takeda, Miel Vander Sande, Ruben Verborgh. The Fun-
damentals of Semantic Versioned Querying. Published in proceedings of the 12th
International Workshop on Scalable Semantic Web Knowledge Base Systems co-
located with 17th International Semantic Web Conference.
Introduction of formalisations for performing semantic versioned queries. This was
identified as a need when working on “Triple Storage for Random-Access Versioned
Querying of RDF Archives”.
Joachim Van Herwegen, Ruben Taelman, Miel Vander Sande, Ruben Verborgh.
Demonstration of Comunica, a Web framework for querying heterogeneous Linked
Data interfaces. Published in proceedings of the 17th International Semantic Web
Conference: Posters and Demos.
Demonstration of “Comunica: a Modular SPARQL Query Engine for the Web”.
Ruben Taelman, Miel Vander Sande, Ruben Verborgh. GraphQL-LD: Linked Data
Querying with GraphQL. Published in proceedings of the 17th International Seman-
tic Web Conference: Posters and Demos.
Demonstration of a GraphQL-based query language, as a developer-friendly alter-
native to SPARQL.
Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, Ruben Verborgh.
Comunica: a Modular SPARQL Query Engine for the Web. Published in proceed-
ings of the 17th International Semantic Web Conference.
Journal publication on Comunica. Included in this dissertation as Chapter 4.

2019
Brecht Van de Vyvere, Ruben Taelman, Pieter Colpaert, Ruben Verborgh. Using an
existing website as a queryable low-cost LOD publishing interface. Published in
proceedings of the 16th Extended Semantic Web Conference: Posters and Demos
(2019).
Extension of “Comunica: a Modular SPARQL Query Engine for the Web” to query
over semantically annotated paginated websites.

28

Ruben Taelman, Miel Vander Sande, Joachim Van Herwegen, Erik Mannens,
Ruben Verborgh. Reflections on: Triple Storage for Random-Access Versioned
Querying of RDF Archives. Published in proceedings of the 18th International Se-
mantic Web Conference (2019).
Conference presentation on “Triple Storage for Random-Access Versioned Querying
of RDF Archives”.
Miel Vander Sande, Sjors de Valk, Enno Meijers, Ruben Taelman, Herbert Van de
Sompel, Ruben Verborgh. Discovering Data Sources in a Distributed Network of
Heritage Information. Published in proceedings of the Posters and Demo Track of
the 15th International Conference on Semantic Systems (2019).
Demonstration of an infrastructure to optimize federated querying over multiple
sources, making use of “Comunica: a Modular SPARQL Query Engine for the Web”
Raf Buyle, Ruben Taelman, Katrien Mostaert, Geroen Joris, Erik Mannens, Ruben
Verborgh, Tim Berners-Lee. Streamlining governmental processes by putting citi-
zens in control of their personal data. Published in proceedings of the 6th In-
ternational Conference on Electronic Governance and Open Society: Challenges in
Eurasia (2019).
Reporting on a proof-of-concept within the Flemish government to use the decen-
tralised Solid ecosystem for handling citizen data.

29

Chapter 2.
Generating Synthetic Evolving Data
In this chapter, we address the first challenge of this PhD, namely: “Experimentation re-
quires realistic evolving data”. This challenge is a prerequisite to the next challenges, in
which storage and querying techniques are introduced for evolving data. In order to eval-
uate the performance of storage and querying systems that handle evolving knowledge
graphs, we must first have such knowledge graphs available to us. Ideally, real-world
knowledge graphs should be used, as these can show the true performance of such sys-
tems in various circumstances. However, these real-world knowledge graphs have limited
public availability, and do not allow for the required flexibility when evaluating systems.
For example, the evaluation of storage systems can require the ingestion of evolving
knowledge graphs of varying sizes, but real-world datasets only exist in fixed sizes.
To solve this problem, we focus on the generation of evolving knowledge graphs assum-
ing that we have population distributions as input. For this, we started from the research
question: “Can population distribution data be used to generate realistic synthetic public
transport networks and scheduling?” Concretely, we introduce a mimicking algorithm for
generating realistic synthetic evolving knowledge graphs with configurable sizes and
properties. The algorithm is based on established concepts from the domain of public
transport networks design, and takes population distributions as input to generate realistic
transport networks. The algorithm has been implemented in a system called PoDiGG,
and has been evaluated to measure its performance and level of realism.

30

Ruben Taelman, Pieter Colpaert, Erik Mannens, and Ruben Verborgh. 2019. Generating
Public Transport Data based on Population Distributions for RDF Benchmarking.
Semantic Web Journal 10, 2 (January 2019), 305–328.

Abstract
When benchmarking RDF data management systems such as public trans-
port route planners, system evaluation needs to happen under various real-
istic circumstances, which requires a wide range of datasets with different
properties. Real-world datasets are almost ideal, as they offer these realis-
tic circumstances, but they are often hard to obtain and inflexible for test-
ing. For these reasons, synthetic dataset generators are typically preferred
over real-world datasets due to their intrinsic flexibility. Unfortunately,
many synthetic datasets that are generated within benchmarks are insuffi-
ciently realistic, raising questions about the generalizability of benchmark
results to real-world scenarios. In order to benchmark geospatial and tem-
poral RDF data management systems, such as route planners, with suffi-
cient external validity and depth, we designed PoDiGG, a highly config-
urable generation algorithm for synthetic public transport datasets with
realistic geospatial and temporal characteristics comparable to those of
their real-world variants. The algorithm is inspired by real-world public
transit network design and scheduling methodologies. This article discuss-
es the design and implementation of PoDiGG and validates the properties
of its generated datasets. Our findings show that the generator achieves a
sufficient level of realism, based on the existing coherence metric and new
metrics we introduce specifically for the public transport domain. There-
by, PoDiGG provides a flexible foundation for benchmarking RDF data
management systems with geospatial and temporal data.

2.1. Introduction
The Resource Description Framework (RDF) [3] and Linked Data [5] technologies en-
able distributed use and management of semantic data models. Datasets with an interop-
erable domain model can be stored and queried by different data owners in different
ways. In order to discover the strengths and weaknesses of different storage and querying
possibilities, data-driven benchmarks with different sizes of datasets and varying charac-
teristics can be used.
Regardless of whether existing data-driven benchmarks use real or synthetic datasets, the
external validity of their results can be too limited, which makes a generalization to other
datasets difficult. Real datasets, on the one hand, are often only scarcely available for
testing, and only cover very specific scenarios, such that not all aspects of systems can be
assessed. Synthetic datasets, on the other hand, are typically generated by mimicking al-
gorithms [6, 7, 8, 9], which are not always sufficiently realistic [10]. Features that are rel-

31

evant for real-world datasets may not be tested. As such, conclusions drawn from exist-
ing benchmarks do not always apply to the envisioned real-world scenarios. One way to
get the best of both worlds is to design mimicking algorithms that generate realistic syn-
thetic datasets.
The public transport domain provides data with both geospatial and temporal properties,
which makes this an especially interesting source of data for benchmarking. Its represen-
tation as Linked Data is valuable because 1) of the many shared entities, such as stops,
routes and trips, across different existing datasets on the Web, 2) these entities can be dis-
tributed over different datasets and 3) benefit from interlinking for the improvement of
discoverability. Synthetic public transport datasets are particularly important and needed
in cases where public transport route planning algorithms are evaluated. The Linked Con-
nections framework [11] and Connection Scan Algorithm [12] are examples of such pub-
lic transport route planning systems. Because of the limited availability of real-world
datasets with desired properties, these systems were evaluated with only a very low num-
ber of datasets, respectively one and three datasets. A synthetic public transport dataset
generator would make it easier for researchers to include a higher number of realistic
datasets with various properties in their evaluations, which would be beneficial to the dis-
covery of new insights from the evaluations. Network size, network sparsity and tempo-
ral range are examples of such properties, and different combinations of them may not
always be available in real datasets, which motivates the need for generating synthetic,
but realistic datasets with these properties.
Not only are public transport datasets useful for benchmarking route planning systems,
they are also highly useful for benchmarking geospatial [13, 14] and temporal [15, 16]
RDF systems due to the intrinsic geospatial and temporal properties of public transport
datasets. While synthetic dataset generators already exist in the geospatial and temporal
domain [17, 18], no systems exist yet that focus on realism, and specifically look into the
generation of public transport datasets. As such, the main topic that we address in this
work, is solving the need for realistic public transport datasets with geospatial and tem-
poral characteristics, so that they can be used to benchmark RDF data management and
route planning systems. More specifically, we introduce a mimicking algorithm for gen-
erating realistic public transport data, which is the main contribution of this work.
We observed a significant correlation between transport networks and the population dis-
tributions of their geographical areas, which is why population distributions are the dri-
ving factor within our algorithm. The cause of this correlation is obvious, considering
transport networks are frequently used to transport people, but other – possibly indepen-
dent – factors exist that influence transport networks as well, like certain points of inter-
est such as tourist attractions and shopping areas. Our algorithm is subdivided into five
sequential steps, inspired by existing methodologies from the domains of public transit
planning [19] as a means to improve the realism of the algorithm’s output data. These
steps include the creation of a geospatial region, the placement of stops, edges and routes,
and the scheduling of trips. We provide an implementation of this algorithm, with differ-
ent parameters to configure the algorithm. Finally, we confirm the realism of datasets that
are generated by this algorithm using the existing generic structuredness measure [10]
and new measures that we introduce, which are specific to the public transport domain.

32

The notable difference of this work compared to other synthetic dataset generators is that
our generation algorithm specializes in generating public transit networks, while other
generators either focus on other domains, or aim to be more general-purpose. Further-
more, our algorithm is based on population distributions and existing methodologies
from public transit network design.
In the next section, we introduce the related work on dataset generation, followed by the
background on public transit network design, and transit feed formats in Section 2.3. In
Section 2.4, we introduce the main research question and hypothesis of this work. Next,
our algorithm is presented in Section 2.5, followed by its implementation in Section 2.6.
In Section 2.7, we present the evaluation of our implementation, followed by a discussion
and conclusion in Section 2.8 and Section 2.9.

2.2. Related Work
In this section, we present the related work on spatiotemporal and RDF dataset
generation,
Spatiotemporal database systems store instances that are described using an identifier, a
spatial location and a timestamp. In order to evaluate spatiotemporal indexing and query-
ing techniques with datasets, automatic means exist to generate such datasets with pre-
dictable characteristics [20].
Brinkhoff [21] argues that moving objects tend to follow a predefined network. Using
this and other statements, he introduces a spatiotemporal dataset generator. Such a net-
work can be anything over which certain objects can move, ranging from railway net-
works to air traffic connections. The proposed parameter-based generator restricts the ex-
istence of the spatiotemporal objects to a predefined time period . It is as-
sumed that each edge in the network has a maximum allowed speed and capacity over
which objects can move at a certain speed. The eventual speed of each object is defined
by the maximum speed of its class, the maximum allowed speed of the edge, and the con-
gestion of the edge based on its capacity. Furthermore, external events that can impact
the movement of the objects, such as weather conditions, are represented as temporal
grids over the network, which apply a decreasing factor on the maximum speed of the
objects in certain areas. The existence of each object that is generated starts at a certain
timestamp, which is determined by a certain function, and dies when it arrives at its des-
tination. The starting node of an object can be chosen based on three approaches:

dataspace-oriented approaches: Selecting the nearest node to a position picked
from a two-dimensional distribution function that maps positions to nodes.
region-based approaches: Improvement of the data-space oriented approach where
the data space is represented as a collection of cells, each having a certain chance of
being the place of a starting node.
network-based approaches: Selection of a network node based on a one-dimen-
sional distribution function that assigns a chance to each node.

[t , t)min max

33

Determining the destination node using one of these approaches leads to non-satisfying
results. Instead, the destination is derived from the preferred length of a route. Each route
is determined as the fastest path to a destination, weighed by the external events. Finally,
the results are reported as either textual output, insertion into a database or a figure of the
generated objects. Compared to our work, this approach assumes a predefined network,
while our algorithm also includes the generation of the network. For our work, we reuse
the concepts of object speed and region-based node selection with relation to population
distributions.
In order to improve the testability of Information Discovery Systems, a generic synthetic
dataset generator [22] was developed that is able to generate synthetic data based on de-
clarative graph definitions. This graph is based on objects, attributes and relationships
between them. The authors propose to generate new instances, such as people, based on a
set of dependency rules. They introduce three types of dependencies for the generation of
instances:

independent: Attribute values that are independent of other instances and attributes.
intra-record (horizontal) dependencies: Attribute values depending on other val-
ues of the same instance.
inter-record (vertical) dependencies: Relationships between different instances.

Their engine is able to accept such dependencies as part of a semantic graph definition,
and iteratively creates new instances to form a synthetic dataset. This tool however out-
puts non-RDF CSV files, which makes it impossible to directly use this system for the
generation of public transport datasets in RDF using existing ontologies. For our public
transport use case, individual entities such as stops, stations and connections would be
possible to generate up to a certain level using this declarative tool. However, due to the
underlying relation to population distributions and specific restrictions for resembling
real datasets, declarative definitions are too limited.
The need for benchmarking RDF data management systems is illustrated by the existence
of the Linked Data Benchmark Council [23] and the HOBBIT H2020 EU project (http:/ /
project- hobbit.eu/) for benchmarking of Big Linked Data. RDF benchmarks are typically
based on certain datasets that are used as input to the tested systems. Many of these
datasets are not always very closely related to real datasets [10], which may result in con-
clusions drawn from benchmarking results that do not translate to system behaviours in
realistic settings.
Duan et al. [10] argue that the realism of an RDF dataset can be measured by comparing
the structuredness of that dataset with a realistic equivalent. The authors show that real-
world datasets are typically less structured than their synthetic counterparts, which can
results in significantly different benchmarking results, since this level of structuredness
can have an impact on how certain data is stored in RDF data management systems. This
is because these systems may behave differently on datasets with different levels of struc-
turedness, as they can have certain optimizations for some cases. In order to measure this
structuredness, the authors introduce the coherence measure of a dataset with a type
system that can be calculated as follows:

D

T

34

The type system contains all the RDF types that are present in a dataset.
represents the coverage of a type in a dataset , and is calculated as the fraction of
type instances that set a value for all its properties. The factor is
used to weight this sum, so that the coherence is always a value between 0 and 1, with 1
representing a perfect structuredness. A maximal coherence means that all instances in
the dataset have values for all possible properties in the type system, which is for exam-
ple the case in relational databases without null values. Based on this measure, the au-
thors introduce a generic method for creating variants of real datasets with different sizes
while maintaining a similar structuredness. The authors describe a method to calculate
the coverage value of this dataset, which has been implemented as a procedure in the Vir-
tuoso RDF store [9]. As the goal of our work is to generate realistic RDF public transport
datasets, we will use this measure to compare the realism of generated datasets with real
datasets. As this high-level measure is used to define realism over any kind of RDF
dataset, we will introduce new measures to validate the realism for specifically the case
of public transport datasets.

2.3. Public Transit Background
In this section, we present background on public transit planning that is essential to this
work. We discuss existing public transit network planning methodologies and formats for
exchanging transit feeds.

2.3.1. Public Transit Planning
The domain of public transit planning entails the design of public transit networks, ros-
tering of crews, and all the required steps inbetween. The goal is to maximize the quality
of service for passengers while minimizing the costs for the operator. Given a public de-
mand and a topological area, this planning process aims to obtain routes, timetables and
vehicle and crew assignment. A survey about 69 existing public transit planning ap-
proaches shows that these processes are typically subdivided into five sequential steps [19]:

1. route design, the placement of transit routes over an existing network.
2. frequencies setting, the temporal instantiation of routes based on the available
vehicles and estimated demand.
3. timetabling, the calculation of arrival and departure times at each stop based on
estimated demand.
4. vehicle scheduling, vehicle assignment to trips.
5. crew scheduling and rostering, the assignment of drivers and additional crew to
trips.

CH(T ,D) = WT (CV (T ,D)) ∗ CV (T ,D)
T∈T

∑

T CV (T ,D)
T D

WT (CV (T ,D))

35

In this paper, we only consider the first three steps for our mimicking algorithm, which
leads to all the required information that is of importance to passengers in a public transit
schedule. We present the three steps from this survey in more detail hereafter.
The first step, route design, requires the topology of an area and public demand as input.
This topology describes the network in an area, which contains possible stops and edges
between these stops. Public demand is typically represented as origin-destination (OD)
matrices, which contain the number of passengers willing to go from origin stops to des-
tination stops. Given this input, routes are designed based on the following
objectives [19]:

area coverage: The percentage of public demand that can be served.
route and trip directness: A metric that indicates how much the actual trips from
passengers deviate from the shortest path.
demand satisfaction: How many stops are close enough to all origin and destina-
tion points.
total route length: The total distance of all routes, which is typically minimized by
operators.
operator-specific objectives: Any other constraints the operator has, for example
the shape of the network.
historical background: Existing routes may influence the new design.

The next step is the setting of frequencies, which is based on the routes from the previous
step, public demand and vehicle availability. The main objectives in this step are based
on the following measures [19]:

demand satisfaction: How many stops are serviced frequently enough to avoid
overcrowding and long waiting times.
number of line runs: How many times each line is serviced – a trade-off between
the operator’s aim for minimization and the public demand for maximization.
waiting time bounds: Regulation may put restrictions on minimum and maximum
waiting times between line runs.
historical background: Existing frequencies may influence the new design.

The last important step for this work is timetabling, which takes the output from the pre-
vious steps as input, together with the public demand. The objectives for this step are the
following:

demand satisfaction: Total travel time for passengers should be minimized.
transfer coordination: Transfers from one line to another at a certain stop should
be taken into account during stop waiting times, including how many passengers are
expected to transfer.
fleet size: The total amount of available vehicles and their usage will influence the
timetabling possibilities.
historical background: Existing timetables may influence the new design.

36

2.3.2. Transit Feed Formats
The de-facto standard for public transport time schedules is the General Transit Feed
Specification (GTFS) (https:/ / developers.google.com/ transit/ gtfs/). GTFS is an exchange
format for transit feeds, using a series of CSV files contained in a zip file. The specifica-
tion uses the following terminology to define the rules for a public transit system:

Stop is a geospatial location where vehicles stop and passengers can get on or off,
such as platform 3 in the train station of Brussels.
Stop time indicates a scheduled arrival and departure time at a certain stop.
Route is a time-independent collection of stops, describing the sequence of stops a
certain vehicle follows in a certain public transit line. For example the train route
from Brussels to Ghent.
Trip is a collection of stops with their respective stop times, such as the route from
Brussels to Ghent at a certain time.

The zip file is put online by a public transit operator, to be downloaded by route
planning [24] software. Two models are commonly used to then extract these rules into a
graph [25]. In a time-expanded model, a large graph is modeled with arrivals and depar-
tures as nodes and edges connect departures and arrivals together. The weights on these
edges are constant. In a time-dependent model, a smaller graph is modeled in which ver-
tices are physical stops and edges are transit connections between them. The weights on
these edges change as a function of time. In both models, Dijkstra and Dijkstra-based al-
gorithms can be used to calculate routes.
In contrast to these two models, the Connection Scan Algorithm [12] takes an ordered ar-
ray representation of connections as input. A connection is the actual departure time at a
stop and an arrival at the next stop. These connections can be given a IRI, and described
using RDF, using the Linked Connections [11] ontology. For this base algorithm and its
derivatives, a connection object is the smallest building block of a transit schedule.
In our work, generated public transport networks and time schedules can be serialized to
both the GTFS format, and RDF datasets using the Linked Connections ontology.

2.4. Research Question
In order to generate public transport networks and schedules, we start from the hypothe-
sis that both are correlated with the population distribution within the same area. More
populated areas are expected to have more nearby and more frequent access to public
transport, corresponding to the recurring demand satisfaction objective in public transit
planning [19]. When we calculate the correlation between the distribution of stops in an
area and its population distribution, we discover a positive correlation of 0.439 for Bel-
gium and 0.459 for the Netherlands (p-values in both cases < 0.00001), thereby validat-
ing our hypothesis with a confidence of 99%. Because of the continuous population vari-
able and the binary variable indicating whether or not there is a stop, the correlation is
calculated (https:/ / github.com/ PoDiGG/ podigg- evaluate/ blob/ master/ stats/ correlation.r)
using the point-biserial correlation coefficient [26]. For the calculation of these correla-

37

tions, we ignored the population value outliers. Following this conclusion, our mimicking
algorithm will use such population distributions as input, and derive public transport net-
works and trip instances.
The main objective of a mimicking algorithm is to create realistic data, so that it can be
used to by benchmarks to evaluate systems under realistic circumstances. We will mea-
sure dataset realism in high-level by comparing the levels of structuredness of real-world
datasets and their synthetic variants using the coherence metric introduced by Duan et
al. [10]. Furthermore, we will measure the realism of different characteristics within pub-
lic transport datasets, such as the location of stops, density of the network of stops, length
of routes or the frequency of connections. We will quantify these aspects by measuring
the distance of each aspect between real and synthetic datasets. These dataset characteris-
tics will be linked with potential evaluation metrics within RDF data management sys-
tems, and tasks to evaluate them. This generic coherence metric together with domain-
specific metrics will provide a way to evaluate dataset realism.
Based on this, we introduce the following research question for this work:

Can population distribution data be used to generate realistic synthetic public trans-
port networks and scheduling?

We provide an answer to this question by first introducing an algorithm for generating
public transport networks and their scheduling based on population distributions in Sec-
tion 2.5. After that, we validate the realism of datasets that were generated using an im-
plementation of this algorithm in Section 2.7.

2.5. Method
In order to formulate an answer to our research question, we designed a mimicking algo-
rithm that generates realistic synthetic public transit feeds. We based it on techniques
from the domains of public transit planning, spatiotemporal and RDF dataset generation.
We reuse the route design, frequencies setting and timetabling steps from the domain
public transit planning, but prepend this with a network generation phase.
Fig. 3 shows the model of the generated public transit feeds, with connections being the
primary data element.

38

We consider different properties in this model based on the independent, intra-record or
inter-record dependency rules [22], as discussed in Section 2.2. The arrival time in a con-
nection can be represented as a fully intra-record dependency, because it depends on the
time it departed and the stops it goes between. The departure time in a connection is both
an intra-record and inter-record dependency, because it depends on the stop at which it
departs, but also on the arrival time of the connection before it in the trip. Furthermore,
the delay value can be seen as an inter-record dependency, because it is influenced by the
delay value of the previous connection in the trip. Finally, the geospatial location of a
stop depends on the location of its parent station, so this is also an inter-record dependen-
cy. All other unmentioned properties are independent.
In order to generate data based on these dependency rules, our algorithm is subdivided in
five steps:

1. Region: Creation of a two-dimensional area of cells annotated with population
density information.
2. Stops: Placement of stops in the area.
3. Edges: Connecting stops using edges.
4. Routes: Generation of routes between stops by combining edges.
5. Trips: Scheduling of timely trips over routes by instantiating connections.

These steps are not fully sequential, since stop generation is partially executed before and
after edge generation. The first three steps are required to generate a network, step 4 cor-
responds to the route design step in public transit planning and step 5 corresponds to both
the frequencies setting and timetabling. These steps are explained in the following
subsections.

Fig. 3: The resources (rectangle), literals (dashed rectangle) and properties (arrows)
used to model the generated public transport data. Node and text colors indicate

vocabularies.

39

2.5.1. Region
In order to create networks, we sample geographic regions in which such networks exist
as two-dimensional matrices. The resolution is defined as a configurable number of cells
per square of one latitude by one longitude. Network edges are then represented as links
between these cells. Because our algorithm is population distribution-based, each cell
contains a population density. These values can either be based on real population infor-
mation from countries, or this can be generated based on certain statistical distributions.
For the remainder of this paper, we will reuse the population distribution from Belgium
as a running example, as illustrated in Fig. 4.

2.5.2. Stops
Stop generation is divided into two steps. First, stops are placed based on population val-
ues, then the edge generation step is initiated after which the second phase of stop gener-
ation is executed where additional stops are created based on the generated edges.
Population-based For the initial placement of stops, our algorithm only takes a popula-
tion distribution as input. The algorithm iteratively selects random cells in the two-di-
mensional area, and tags those cells as stops. To make it region-based [21], the selection
uses a weighted Zipf-like-distribution, where cells with high population values have a
higher chance of being picked than cells with lower values. The shape of this Zipf curve
can be scaled to allow for different stop distributions to be configured. Furthermore, a
minimum distance between stops can be configured, to avoid situations where all stops
are placed in highly populated areas.

Fig. 4: Heatmap of the population distribution in Belgium, which is illustrated for each
cell as a scale going from white (low), to red (medium) and black (high). The actual

placement of train stops are indicated as green points.

40

Edge-based Another stop generation phase exists after the edge generation because real
transit networks typically show line artifacts for stop placement. Subfig. 5.1 shows the
actual train stops in Belgium, which clearly shows line structures. Stop placement after
the first generation phase results can be seen in Subfig. 5.2, which does not show these
line structures. After the second stop generation phase, these line structures become more
apparent as can be seen in Subfig. 5.3.

In this second stop generation phase, edges are modified so that sufficiently populated
areas will be included in paths formed by edges, as illustrated by Fig. 6. Random edges
will iteratively be selected, weighted by the edge length measured as Euclidian distance.
(The Euclidian distance based on geographical coordinates is always used to calculate
distances in this work.) On each edge, a random cell is selected weighed by the popula-
tion value in the cell. Next, a weighed random point in a certain area around this point is
selected. This selected point is marked as a stop, the original edge is removed and two
new edges are added, marking the path between the two original edge nodes and the new-
ly selected node.

Fig. 5: Placement of train stops in Belgium, each dot represents one stop.

Subfig. 5.1: Real stops with line
structures.

Subfig. 5.2: Synthetic stops after the
first stop generation phase without

line structures.

Subfig. 5.3: Synthetic stops after the
second stop generation phase with

line structures.

41

2.5.3. Edges
The next phase in public transit network generation connects stops that were generated in
the previous phase with edges. In order to simulate real transit network structures, we
split up this generation phase into three sequential steps. In the first step, clusters of near-
by stops are formed, to lay the foundation for short-distance routes. Next, these local
clusters are connected with each other, to be able to form long-distance routes. Finally, a
cleanup step is in place to avoid abnormal edge structures in the network.
Short-distance The formation of clusters with nearby stations is done using agglomera-
tive hierarchical clustering. Initially, each stop is part of a seperate cluster, where each
cluster always maintains its centroid. The clustering step will iteratively try to merge two
clusters with their centroid distance below a certain threshold. This threshold will in-
crease for each iteration, until a maximum value is reached. The maximum distance value
indicates the maximum inter-stop distance for forming local clusters. When merging two
clusters, an edge is added between the closest stations from the respective clusters. The
center location of the new cluster is also recalculated before the next iteration.
Long-distance At this stage, we have several clusters of nearby stops. Because all stops
need to be reachable from all stops, these separate clusters also need to be connected.
This problem is related to the domain of route planning over public transit networks, in

Fig. 6: Illustration of the second phase of stop generation where edges are modified to
include sufficiently populated areas in paths.

Subfig. 6.1: Selecting a weighted
random point on the edge.

Subfig. 6.2: Defining an area around
the selected point.

Subfig. 6.3: Choosing a random
point within the area, weighted by

population value.

Subfig. 6.4: Modify edges so that the
path includes this new point.

42

which networks can be decomposed into smaller clusters of nearby stations to improve
the efficiency of route planning. Each cluster contains one or more border stations [27],
which are the only points through which routes can be formed between different clusters.
We reuse this concept of border stations, by iteratively picking a random cluster, identify-
ing its closest cluster based on the minimal possible stop distance, and connecting their
border stations using a new edge. After that, the two clusters are merged. The iteration
will halt when all clusters are merged and there is only one connected graph.
Cleanup The final cleanup step will make sure that the number of stops that are connect-
ed by only one edge are reduced. In real train networks, the majority of stations are con-
nected with at least more than one other station. The two earlier generation steps however
generate a significant number of loose stops, which are connected with only a single oth-
er stop with a direct edge. In this step, these loose stops are identified, and an attempt is
made to connect them to other nearby stops as shown in Algorithm 1. For each loose
stop, this is done by first identifying the direction of the single edge of the loose stop on
line 18. This direction is scaled by the radius in which to look for stops, and defines the
stepsize for the loop that starts on line 20. This loop starts from the loose stop and itera-
tively moves the search position in the defined direction, until it finds a random stop in
the radius, or the search distance exceeds the average distance between the stops in the
neighbourhood of this loose stop. This random stop from line 22 can be determined by
finding all stations that have a distance to the search point that is below the radius, and
picking a random stop from this collection. If such a stop is found, an edge is added from
our loose stop to this stop.

43

Fig. 7 shows an example of these three steps. After this phase, a network with stops and
edges is available, and the actual transit planning can commence.

1 FUNCTION RemoveLooseStops(S, E, N, O, r)
2 INPUT:
3 Set of stops S
4 Set of edges E between the stops from S
5 Maximum number N of closest stations to consider
6 Maximum average distance O around a stop to be considered
7 a loose station
8 Radius r in which to look for stops.
9 FOREACH s in S with degree of 1 w.r.t. E DO
10 sx = x coordinate of s
11 sy = y coordinate of s
12 C = N closest stations to s in S excluding s
13 c = closest station to s in S excluding s
14 cx = x coordinate of c
15 cy = y coordinate of c
16 a = average distance between each pair of stops in C
17 IF a <= O and C not empty THEN
18 dx= (sx - cx) * r
19 dy= (sy - cy) * r
20 ox = sx; oy = sy
21 WHILE distance between o and s < a DO
22 ox += dx; oy += dy
23 s' = random station around o with radius a * r
24 IF s' exists
25 add edge between s and s' to E and continue
26 next for-loop iteration

Algorithm 1: Reduce the number of loose stops by adding additional edges.

44

Generator Objectives The main guaranteed objective of the edge generator is that the
stops form a single connected transit network graph. This is to ensure that all stops in the
network can be reached from any other stop using at least one path through the network.

2.5.4. Routes
Given a network of stops and edges, this phase generates routes over the network. This is
done by creating short and long distance routes in two sequential steps.
Short-distance The goal of the first step is to create short routes where vehicles deliver
each passed stop. This step makes sure that all edges are used in at least one route, this
ensures that each stop can at least be reached from each other stop with one or more
transfers to another line. The algorithm does this by first determining a subset of the
largest stops in the network, based on the population value. The shortest path from each
large stop to each other large stop through the network is determined. if this shortest path
is shorter than a predetermined value in terms of the number of edges, then this path is
stored as a route, in which all passed stops are considered as actual stops in the route. For
each edge that has not yet been passed after this, a route is created by iteratively adding
unpassed edges to the route that are connected to the edge until an edge is found that has
already been passed.
Long-distance In the next step, longer routes are created, where the transport vehicle not
necessarily halts at each passed stop. This is done by iteratively picking two stops from
the list of largest stops using the network-based method [21] with each stop having an
equal chance to be selected. A heuristical shortest path algorithm is used to determine a

Fig. 7: Example of the different steps in the edges generation algorithm.

Subfig. 7.1: Formation of local
clusters.

Subfig. 7.2: Connecting clusters
through border stations.

Subfig. 7.3: Cleanup of loose stops.

45

route between these stops. This algorithm searches for edges in the geographical direc-
tion of the target stop. This is done to limit the complexity of finding long paths through
potentially large networks. A random amount of the largest stops on the path are selected,
where the amount is a value between a minimum and maximum preconfigured route
length. This iteration ends when a predetermined number of routes are generated.
Generator Objectives This algorithm takes into account the objectives of route
design [19], as discussed in Section 2.2. More specifically, by first focusing on the largest
stops, a minimal level of area coverage and demand satisfaction is achieved, because the
largest stops correspond to highly populated areas, which therefore satisfies at least a
large part of the population. By determining the shortest path between these largest stops,
the route and trip directness between these stops is optimal. Finally, by not instantiating
all possible routes over the network, the total route length is limited to a reasonable level.

2.5.5. Trips
A time-agnostic transit network with routes has been generated in the previous steps. In
this final phase, we temporally instantiate routes by first determining starting times for
trips, after which the following stop times can be calculated based on route distances. In-
stead of generating explicit timetables, as is done in typical transit scheduling methodolo-
gies, we create fictional rides of vehicles. In order to achieve realistic trip times, we ap-
proximate real trip time distributions, with the possibility to encounter delays.
As mentioned before in Section 2.2, each consecutive pair of start and stop time in a trip
over an edge corresponds to a connection. A connection can therefore be represented as a
pair of timestamps, a link to the edge representing the departure and arrival stop, a link to
the trip it is part of, and its index within this trip.
Trip Starting Times The trips generator iteratively creates new connections until a pre-
defined number is reached. For each connection, a random route is selected with a larger
chance of picking a long route. Next, a random start time of the connection is deter-
mined. This is done by first picking a random day within a certain range. After that, a
random hour of the day is determined using a preconfigured distribution. This distribu-
tion is derived from the public logs of iRail (https:/ / hello.irail.be), a route planning API
in Belgium [28]. A seperate hourly distribution is used for weekdays and weekends,
which is chosen depending on the random day that was determined.
Stop Times Once the route and the starting time have been determined, different stop
times across the trip can be calculated. For this, we take into account the following
factors:

Maximum vehicle speed , preconfigured constant.
Vehicle acceleration , preconfigured constant.
Connection distance , Euclidian distance between stops in network.
Stop size , derived from population value.

ω

ς

δ

σ

46

For each connection in the trip, the time it takes for a vehicle to move between the two
stops over a certain distance is calculated using the formula in Equation 3. Equation 1
calculates the required time to reach maximum speed and Equation 2 calculates the re-
quired distance to reach maximum speed. This formula simulates the vehicle speeding up
until its maximum speed, and slowing down again until it reaches its destination. When
the distance is too short, the vehicle will not reach its maximum speed, and just speeds up
as long as possible until is has to slow down again to stop in time.

Not only the connection duration, but also the waiting times of the vehicle at each stop
are important for determining the stop times. These are calculated as a constant minimum
waiting time together with a waiting time that increases for larger stop sizes , this in-
crease is determined by a predefined growth factor.
Delays Finally, each connection in the trip will have a certain chance to encounter a de-
lay. When a delay is applicable, a delay value is randomly chosen within a certain range.
Next to this, also a cause of the delay is determined from a preconfigured list. These
causes are based on the Traffic Element Events from the Transport Disruption ontology
(https:/ / transportdisruption.github.io/), which contains a number of events that are not
planned by the network operator such as strikes, bad weather or animal collisions. Differ-
ent types of delays can have a different impact factor of the delay value, for instance,
simple delays caused by rush hour would have a lower impact factor than a major train
defect. Delays are carried over to next connections in the trip, with again a chance of en-
countering additional delay. Furthermore, these delay values can also be reduced when
carried over to the next connection by a certain predetermined factor, which simulates the
attempt to reduce delays by letting vehicles drive faster.
Generator Objectives For trip generation, we take into account several objectives from
the setting of frequencies and timetabling from transit planning [19]. By instantiating
more long distance routes, we aim to increase demand satisfaction as much as possible,
because these routes deliver busy and populated areas, and the goal is to deliver these
more frequently. Furthermore, by taking into account realistic time distributions for trip
instantiation, we also adhere to this objective. Secondly, by ensuring waiting times at
each stop that are longer for larger stations, the transfer coordination objective is taken
into account to some extent.

Equation 1: Time to reach maximum speed.

Tω = ω/ς
(1)

Equation 2: Distance to reach maximum speed.

δω = T ⋅ ςω
2

(2)

Equation 3: Duration for a vehicle to move between two stops.

{2T + (δ − 2δ)/ωω ω

2δ/ς
 if δ < δ/2ω

 otherwise (3)

σ

47

2.6. Implementation
In this section, we discuss the implementation details of PoDiGG, based on the generator
algorithm introduced in Section 2.5. PoDiGG is split up into two parts: the main PoDiGG
generator, which outputs GTFS data, and PoDiGG-LC, which depends on the main gen-
erator to output RDF data. Serialization in RDF using existing ontologies, such as the
GTFS (http:/ / vocab.gtfs.org/ terms) and Linked Connections ontologies (http:/ / semwe-
b.mmlab.be/ ns/ linkedconnections), allows this inherently linked data to be used within
RDF data management systems, where it can for instance be used for benchmarking pur-
poses. Providing output in GTFS will allow this data to be used directly within all sys-
tems that are able to handle transit feeds, such as route planning systems. The two gener-
ator parts will be explained hereafter, followed by a section on how the generator can be
configured using various parameters.

2.6.1. PoDiGG
The main requirement of our system is the ability to generate realistic public transport
datasets using the mimicking algorithm that was introduced in Section 2.5. This means
that given a population distribution of a certain region, the system must be able to design
a network of routes, and determine timely trips over this network.
PoDiGG is implemented to achieve this goal. It is written in JavaScript using Node.js,
and is available under an open license on GitHub (https:/ / github.com/ PoDiGG/ podigg).
In order to make installation and usage more convenient, PoDiGG is available as a Node
module on the NPM package manager (https:/ / www.npmjs.com/ package/ podigg) and as a
Docker image on Docker Hub (https:/ / hub.docker.com/ r/ podigg/ podigg/) to easily run on
any platform. Every sub-generator that was explained in Section 2.5, is implemented as a
separate module. This makes PoDiGG highly modifiable and composable, because differ-
ent implementations of sub-generators can easily be added and removed. Furthermore,
this flexible composition makes it possible to use real data instead of certain sub-genera-
tors. This can be useful for instance when a certain public transport network is already
available, and only the trips and connections need to be generated.
We designed PoDiGG to be highly configurable to adjust the characteristics of the gener-
ated output across different levels, and to define a certain seed parameter for producing
deterministic output.
All sub-generators store generated data in-memory, using list-based data structures di-
rectly corresponding to the GTFS format. This makes GTFS serialization a simple and
efficient process. Table 1 shows the GTFS files that are generated by the different
PoDiGG modules. This table does not contain references to the region and edges genera-
tor, because they are only used internally as prerequisites to the later steps. All required
files are created to have a valid GTFS dataset. Next to that, the optional file for excep-
tional service dates is created. Furthermore, delays.txt is created, which is not part
of the GTFS specification. It is an extension we provide in order to serialize delay infor-
mation about each connection in a trip. These delays are represented in a CSV file con-

48

taining columns for referring to a connection in a trip, and contains delay values in mil-
liseconds and a certain reason per connection arrival and departure, as shown in
Listing 2.

In order to easily observe the network structure in the generated datasets, PoDiGG will
always produce a figure accompanying the GTFS dataset. Fig. 8 shows an example of
such a visualization.

File Generator

agency.txt Constant

stops.txt Stops

routes.txt Routes

trips.txt Trips

stop_times.txt Trips

calendar.txt Trips

calendar_dates.txt Trips

delays.txt Trips

Table 1: The GTFS files that are written by PoDiGG, with their corresponding sub-
generators that are responsible for generating the required data. The files in bold refer

to files that are required by the GTFS specification.

trip_id,stop,delay_dep,delay_arr,delay_dep_reason,delay_arr_reason
100_4 ,0 ,0 ,1405754 , ,td:RepairWork
100_6 ,0 ,0 ,1751671 , ,td:BrokenTrain
100_6 ,1 ,1751671 ,1553820 ,td:BrokenTrain ,td:BrokenTrain
100_7 ,0 ,2782295 ,0 ,td:TreeWork ,

Listing 2: Sample of a delays.txt file in a GTFS dataset.

49

Because the generation of large datasets can take a long time depending on the used para-
meters, PoDiGG has a logging mechanism, which provides continuous feedback to the
user about the current status and progress of the generator.
Finally, PoDiGG provides the option to derive realistic public transit queries over the
generated network, aimed at testing the load of route planning systems. This is done by
iteratively selecting two random stops weighed by their size and choosing a random start-
ing time based on the same time distribution as discussed in Subsection 2.5.5. This is se-
rialized to a JSON format (https:/ / github.com/ linkedconnections/ benchmark-
belgianrail#transit- schedules) that was introduced for benchmarking the Linked Connec-
tions route planner [11].

2.6.2. PoDiGG-LC
PoDiGG-LC is an extension of PoDiGG, that outputs data in Turtle/RDF using the on-
tologies shown in Fig. 3. It is also implemented in JavaScript using Node.js, and avail-
able under an open license on GitHub (https:/ / github.com/ PoDiGG/ podigg- lc). PoDiGG-
LC is also available as a Node module on NPM (https:/ / www.npmjs.com/ package/
podigg- lc) and as a Docker image on Docker Hub (https:/ / hub.docker.com/ r/ podigg/
podigg- lc/). For this, we extended the GTFS-LC tool (https:/ / github.com/ PoDiGG/ gtf-
s2lc) that is able to convert GTFS datasets to RDF using the Linked Connections and
GTFS ontologies. The original tool serializes a minimal subset of the GTFS data, aimed
at being used for Linked Connections route planning over connections. Our extension
also serializes trip, station and route instances, with their relevant interlinking. Further-

Fig. 8: Visualization of a generated public transport network based on Belgium’s
population distribution. Each route has a different color, and dark route colors indicate

more frequent trips over them than light colors. The population distribution is
illustrated for each cell as a scale going from white (low), to red (medium) and black

(high). Full image (https:/ / linkedsoftwaredependencies.org/ raw/ podigg/ gen.png)

50

more, our GTFS extension for representing delays is also supported, and is serialized us-
ing a new Linked Connections Delay ontology (http:/ / semweb.datasciencelab.be/ ns/
linked- connections- delay/) that we created.

2.6.3. Configuration
PoDiGG accepts a wide range of parameters that can be used to configure properties of
the different sub-generators. Table 2 shows an overview of the parameters, grouped by
each sub-generator. PoDiGG and PoDiGG-LC accept these parameters (https:/ / github.-
com/ PoDiGG/ podigg#parameters) either in a JSON configuration file or via environ-
ment variables. Both PoDiGG and PoDiGG-LC produce deterministic output for identi-
cal sets of parameters, so that datasets can easily be reproduced given the configuration.
The seed parameter can be used to introduce pseudo-randomness into the output.

51

Name Default
Value

Description

seed 1 The random seed

region_generator isola
ted

Name of a region generator.
(isolated, noisy or region)

lat_offset 0 Value to add with all
generated latitudes

lon_offset 0 Value to add with all
generated longitudes

cells_per_latlon 100 How many cells go in 1
latitude/longitude

stops 600 How many stops should be
generated

min_station_size 0.01 Minimum cell population
value for a stop to form

max_station_size 30 Maximum cell population
value for a stop to form

start_stop_choice_pow
er

4 Power for selecting large
population cells as stops

min_interstop_distanc
e

1 Minimum distance between
stops in number of cells

factor_stops_post_edg
es

0.66 Factor of stops to generate
after edges

edge_choice_power 2 Power for selecting longer
edges to generate stops on

stop_around_edge_choi
ce_power

4 Power for selecting large
population cells around edges

stop_around_edge_radi
us

2 Radius in number of cells
around an edge to select
points

max_intracluster_dist
ance

100 Maximum distance between
stops in one cluster

max_intracluster_dist
ance_growthfactor

0.1 Power for clustering with
more distant stops

post_cluster_max_intr 1.5 Power for connecting a stop

R
eg

io
n

St
op

s

52

acluster_distancefact
or

with multiple stops

loosestations_neighbo
urcount

3 Neighbours around a loose
station that should define its
area

loosestations_max_ran
ge_factor

0.3 Maximum loose station range
relative to the total region
size

loosestations_max_ite
rations

10 Maximum iteration number to
try to connect one loose
station

loosestations_search_
radius_factor

0.5 Loose station neighbourhood
size factor

routes 1000 The number of routes to
generate

largest_stations_frac
tion

0.05 The fraction of stops to form
routes between

penalize_station_size
_area

10 The area in which stop sizes
should be penalized

max_route_length 10 Maximum number of edges
for a route in the macro-step

min_route_length 4 Minimum number of edges
for a route in the macro-step

time_initial 0 The initial timestamp (ms)

time_final 24 *
36000
00

The final timestamp (ms)

connections 30000 Number of connections to
generate

stop_wait_min 60000 Minimum waiting time per
stop

stop_wait_size_factor 60000 Waiting time to add
multiplied by station size

route_choice_power 2 Power for selecting longer
routes for connections

vehicle_max_speed 160 Maximum speed of a vehicle

R
ou

te
s

53

in km/h

vehicle_speedup 1000 Vehicle speedup in km/(h2)

hourly_weekday_distri
bution

...1 Hourly connection chances
for weekdays

hourly_weekend_distri
bution

...1 Hourly connection chances
for weekend days

delay_chance 0 Chance for a connection
delay

delay_max 36000
00

Maximum delay

delay_choice_power 1 Power for selecting larger
delays

delay_reasons ...2 Default reasons and chances
for delays

delay_reduction_durat
ion_fraction

0.1 Maximum part of connection
duration to subtract for delays

start_stop_choice_pow
er

4 Power for selecting large
starting stations

query_count 100 The number of queries to
generate

time_initial 0 The initial timestamp

time_final 24 *
36000
00

The final timestamp

max_time_before_depar
ture

36000
00

Minimum number of edges
for a route in the macro-step

hourly_weekday_distri
bution

...1 Chance for each hour to have
a connection on a weekday

hourly_weekend_distri
bution

...1 Chance for each hour to have
a connection on a weekend
day

Q
ue

ry
se

t

54

2.7. Evaluation
In this section, we discuss our evaluation of PoDiGG. We first evaluate the realism of the
generated datasets using a constant seed by comparing its coherence to real datasets, fol-
lowed by a more detailed realism evaluation of each sub-generator using distance func-
tions. Finally, we provide an indicative efficiency and scalability evaluation of the gener-
ator and discuss practical dataset sizes. All scripts that were used for the following evalu-
ation can be found on GitHub (https:/ / github.com/ PoDiGG/ podigg- evaluate). Our experi-
ments were executed on a 64-bit Ubuntu 14.04 machine with 128 GB of memory and a
24-core 2.40 GHz CPU.

2.7.1. Coherence

2.7.1.1. Metric
In order to determine how closely synthetic RDF datasets resemble their real-world vari-
ants in terms of structuredness, the coherence metric [10] can be used. In RDF dataset
generation, the goal is to reach a level of structuredness similar to real datasets. As men-
tioned before in Section 2.2, many synthetic datasets have a level of structuredness that is
higher than their real-world counterparts. Therefore, our coherence evaluation should in-
dicate that our generator is not subject to the same problem. We have implemented a
command-line tool (https:/ / github.com/ PoDiGG/ graph- coherence) to calculate the coher-
ence value for any given input dataset.

2.7.1.2. Results
When measuring the coherence of the Belgian railway, buses and Dutch railway datasets,
we discover high values for both the real-world datasets and the synthetic datasets, as can
be seen in Table 3. These nearly maximal values indicate that there is a very high level of
structuredness in these real-world datasets. Most instances have all the possible values,
unlike most typical RDF datasets, which have values around or below 0.6 [10]. That is
because of the very specialized nature of this dataset, and the fact that they originate from
GTFS datasets that have the characteristics of relational databases. Only a very limited
number of classes and predicates are used, where almost all instances have the same set
of attributes. In fact, these very high coherence values for real-world datasets simplify the
process of synthetic dataset generation, as less attention needs to be given to factors that
lead to lower levels of structuredness, such as optional attributes for instances. When
generating synthetic datasets using PoDiGG with the same number of stops, routes and
connections for the three gold standards, we measure very similar coherence values, with
differences ranging from 0.08% to 1.64%. This confirms that PoDiGG is able to create

Table 2: Configuration parameters for the different sub-generators. Time values are
represented in milliseconds. 1 Time distributions are based on public route planning
logs [28]. 2 Default delays are based on the Transport Disruption ontology (https:/ /

transportdisruption.github.io/).

55

datasets with the same high level of structuredness to real datasets of these types, as it
inherits the relational database characteristics from its GTFS-centric mimicking algo-
rithm.

2.7.2. Distance to Gold Standards
While the coherence metric is useful to compare the level of structuredness between
datasets, it does not give any detailed information about how real synthetic datasets are
in terms of their distance to the real datasets. In this case, we are working with public
transit feeds with a known structure, so we can look at the different datasets aspects in
more detail. More specifically, we start from real geographical areas with their popula-
tion distributions, and consider the distance functions between stops, edges, routes and
trips for the synthetic and gold standard datasets. In order to check the applicability of
PoDiGG to different transport types and geographical areas, we compare with the gold
standard data of the Belgian railway, the Belgian buses and the Dutch railway. The scripts
that were used to derive these gold standards from real-world data can be found on Git-
Hub (https:/ / github.com/ PoDiGG/ population- density- generator).
In order to construct distance functions for the different generator elements, we consider
several helper functions. The function in Equation 4 is used to determine the closest ele-
ment in a set of elements to a given element , given a distance function . The func-
tion in Equation 5 calculates the distance between all elements in and all elements in

, given a distance function . The computational complexity of is ,
where is the cost for one distance calculation for . The complexity of then be-
comes .

 Belgian railway Belgian buses Dutch railway

Real 0.9845 0.9969 0.9862

Synthetic 0.9879 0.9805 0.9870

Difference 0.0034 0.0164 0.0008

Table 3: Coherence values for three gold standards compared to the values for
equivalent synthetic variants.

B a f

A

B f χ O(∣B∣ ⋅ κ(f))
κ(f) f Δ
O(∣A∣ ⋅ ∣B∣ ⋅ κ(f))

Equation 4: Function to determine the closest element in a set of elements.

χ(a,B, f) = arg min f(a, b): b∈B (1)

56

2.7.2.1. Stops Distance

For measuring the distance between two sets of stops and , we introduce the dis-
tance function from Equation 6. This measures the distance between every possible pair
of stops using the Euclidean distance function . Assuming a constant execution time for

, the computational complexity for is .

2.7.2.2. Edges Distance

In order to measure the distance between two sets of edges and , we use the dis-
tance function from Equation 7, which measures the distance between all pairs of edges
using the distance function . This distance function , which is introduced in Equa-
tion 8, measures the Euclidean distance between the start and endpoints of each edge, and
between the different edges, weighed by the length of the edges. The constant in Equa-
tion 8 is to ensure that the distance between two edges that have an equal length, but exist
at a different position, is not necessarily zero. The computational cost of can be con-
sidered as a constant, so the complexity of becomes .

Equation 5: Function to calculate the distance between all elements in a set of
elements.

Δ(A,B, f) =:

(∣A∣ + ∣B∣) ∗ arg max f(a, b)a∈A,b∈B

f(a,χ(a,B, f)) + f(b,χ(b,A, f))
a∈A
∑

b∈B
∑

(2)

S1 S2

d

κ(d) Δs O(∣S ∣ ⋅1 ∣S ∣)2

Equation 6: Function to calculate the distance between two sets of stops.

Δ (S ,S) = Δ(S ,S , d)s 1 2 : 1 2 (3)

E1 E2

de de

1

de
Δe O(∣E ∣ ⋅1 ∣E ∣)2

Equation 7: Function to calculate the distance between two sets of edges.

Δ (E ,E) = Δ(E ,E , d)e 1 2 : 1 2 e (4)

Equation 8: Function to calculate the distance between two edges.

d (e , e) =e 1 2 : min(d(e , e) + d(e , e),1
from

2
from

1
to

2
to

d(e , e) + d(e , e))1
from

2
to

1
to

2
from

⋅ (d(e , e) − d(e , e) + 1)1
from

1
to

2
from

2
to

(5)

57

2.7.2.3. Routes Distance

Similarly, the distance between two sets of routes and is measured in Equation 9
by applying for the distance function . Equation 10 introduces this distance function

 between two routes, which is calculated by considering the edges in each route and
measuring the distance between those two sets using the distance function from
Equation 7. By considering the maximum amount of edges per route as , the com-
plexity of becomes This leads to a complexity of
for .

2.7.2.4. Connections Distance

Finally, we measure the distance between two sets of connections and using the
function from Equation 11. The distance between two connections is measured using the
function from Equation 12, which is done by considering their respective temporal dis-
tance weighed by a constant –when serializing time in milliseconds, we set to

–, and their geospatial distance using the edge distance function . The complex-
ity of time calculation in can be considered being constant, which makes it overall
complexity . For , this leads to a complexity of .

2.7.2.5. Computability
When using the introduced functions for calculating the distance between stops, edges,
routes or connections, execution times can become long for a large number of elements
because of their large complexity. When applying these distance functions for realistic
numbers of stops, edges, routes and connections, several optimizations should be done in

R1 R2
Δ dr

dr
Δe

emax
dr O(e)max

2 O(∣R ∣ ⋅1 ∣R ∣ ⋅2 e)max
2

Δr

Equation 9: Function to calculate the distance between two sets of routes.

Δ (R ,R) = Δ(R ,R , d)r 1 2 : 1 2 r (6)

Equation 10: Function to calculate the distance between two routes.

d (r , r) = Δ (r , r)r 1 2 : e 1
edges

2
edges

(7)

C1 C2

dϵ dϵ

60000 de
dc

O(e)max
2 Δc O(∣C ∣ ⋅1 ∣C ∣ ⋅2 e)max

2

Equation 11: Function to calculate the distance between two sets of connections.

Δ (C ,C) = Δ(C ,C , d)c 1 2 : 1 2 c (8)

Equation 12: Function to calculate the distance between two connections.

d (c , c)c 1 2 = ((c − c): 1
departureTime

2
departureTime

+ (c − c)/d)1
arrivalTime

2
arrivalTime

ϵ

+ d (c , c)e 1 2

(9)

58

order to calculate these distances in a reasonable time. A major contributor for these high
complexities is for finding the closest element from a set of elements to a given ele-
ment, as introduced in Equation 4. In practice, we only observed extreme execution times
for the respective distance between routes and connections. For routes, we implemented
an optimization, with the same worst-case complexity, that indexes routes based on their
geospatial position, and performs radial search around each route when the closest one
from a set of other routes should be found. For connections, we consider the linear time
dimension when performing binary search for finding the closest connection within a set
of elements.

2.7.2.6. Metrics

In order to measure the realism of each generator phase, we introduce a realism factor
for each phase. These values are calculated by measuring the distance from randomly
generated elements to the gold standard, divided by the distance from the actually gener-
ated elements to the gold standard, as shown below for respectively stops, edges, routes
and connections. We consider these randomly generated elements having the lowest pos-
sible level of realism, so we use these as a weighting factor in our realism values.

2.7.2.7. Results
We measured these realism values with gold standards for the Belgian railway, the Bel-
gian buses and the Dutch railway. In each case, we used an optimal set of parameters
(https:/ / github.com/ PoDiGG/ podigg- evaluate/ blob/ master/ bin/ evaluate.js) to achieve the
most realistic generated output. Table 4 shows the realism values for the three cases,
which are visualized in Fig. 9, Fig. 10, Fig. 11 and Fig. 12. Each value is larger than 1,
showing that the generator at least produces data that is closer to the gold standard, and is
therefore more realistic. The realism for edges is in each case very large, showing that
our algorithm produces edges that are very similar to actual the edge placement in public
transport networks according to our distance function. Next, the realism of stops is lower,
but still sufficiently high to consider it as realistic. Finally, the values for routes and con-
nections show that these sub-generators produce output that is closer to the gold standard
than the random function according to our distance function. Routes achieve the best lev-
el of realism for the Belgian railway case. For this same case, the connections are howev-
er only slightly closer to the gold standard than random placement, while for the other
cases the realism is more significant. All of these realism values show that PoDiGG is
able to produce realistic data for different regions and different transport types.

χ

ρ

ρ (S ,S ,S)s rand gen gs

ρ (E ,E ,E)e rand gen gs

ρ (R ,R ,R)r rand gen gs

ρ (C ,C ,C)c rand gen gs

= Δ (S ,S)/Δ (S ,S): s rand gs s gen gs

= Δ (E ,E)/Δ (E ,E): e rand gs e gen gs

= Δ (R ,R)/Δ (R ,R): r rand gs r gen gs

= Δ (C ,C)/Δ (C ,C): c rand gs c gen gs

59

 Belgian railway Belgian buses Dutch railway

Stops 5.5490 297.0888 4.0017

Edges 147.4209 1633.4693 318.4131

Routes 2.2420 0.0164 1.3095

Connections 1.0451 1.5006 1.3017

Table 4: Realism values for the three gold standards in case of the different sub-
generators, respectively calculated for the stops , edges , routes and

connections .
ρs ρe ρr

ρc

Fig. 9: Stops for the Belgian railway case.

Subfig. 9.1: Random Subfig. 9.2: Generated

Subfig. 9.3: Gold standard

60

Fig. 10: Edges for the Belgian railway case.

Subfig. 10.1: Random Subfig. 10.2: Generated

Subfig. 10.3: Gold standard

Fig. 11: Routes for the Belgian railway case.

Subfig. 11.1: Random Subfig. 11.2: Generated

Subfig. 11.3: Gold standard

61

2.7.3. Performance

2.7.3.1. Metrics
While performance is not the main focus of this work, we provide an indicative perfor-
mance evaluation in this section in order to discover the bottlenecks and limitations of
our current implementation that could be further investigated and resolved in future
work. We measure the impact of different parameters on the execution times of the gener-
ator. The three main parameters for increasing the output dataset size are the number of
stops, routes and connections. Because the number of edges is implicitly derived from
the number of stops in order to reach a connected network, this can not be configured di-
rectly. In this section, we start from a set of parameters that produces realistic output data
that is similar to the Belgian railway case. We let the value for each of these parameters
increase to see the evolution of the execution times and memory usage.

2.7.3.2. Results
Fig. 13 shows a linear increase in execution times when increasing the routes or connec-
tions. The execution times for stops do however increase much faster, which is caused by
the higher complexity of networks that are formed for many stops. The used algorithms
for producing this network graph proves to be the main bottleneck when generating large
networks. Networks with a limited size can however be generated quickly, for any num-
ber of routes and connections. The memory usage results from Fig. 14 also show a linear
increase, but now the increase for routes and connections is higher than for the stops pa-
rameter. These figures show that stops generation is a more CPU intensive process than
routes and connections generation. These last two are able to make better usage of the
available memory for speeding up the process.

Fig. 12: Connections per hour for the Belgian railway case.

62

2.7.4. Dataset size
An important aspect of dataset generation is its ability to output various dataset sizes. In
PoDiGG, different options are available for tweaking these sizes. Increasing the time
range parameter within the generator increases the number of connections while the num-
ber of stops and routes will remain the same. When enlarging the geographical area over
the same period of time, the opposite is true. As a rule of thumb, based on the number of
triples per connection, stops and routes, the total number of generated triples per dataset
is approximately . For the Belgian
railway case, containing 30,011 connections over a period of 9 months, with 583 stops
and 362 routes, this would theoretically result in 213,937 triples. In practice, we reach
235,700 triples when running with these parameters, which is slightly higher because of
the other triples that are not taken into account for this simplified formula, such as the
ones for trips, stations and delays.

2.8. Discussion
In this section, we discuss the main characteristics, the usage within benchmarks and the
limitations of this work. Finally, we mention several PoDiGG use cases.

Fig. 13: Execution times when increasing the number of stops, routes or connections.

Fig. 14: Memory usage when increasing the number of stops, routes or connections.

7 ⋅#connections+ 6 ⋅#stops+#routes

63

2.8.1. Characteristics
Our main research question on how to generate realistic synthetic public transport net-
works has been answered by the introduction of the mimicking algorithm from
Section 2.5, based on commonly used practises in transit network design. This is based
on the accepted hypothesis that the population distribution of an area is correlated with
its transport network design and scheduling. We measured the realism of the generated
datasets using the coherence metric in Subsection 2.7.1 and more fine-grained realism
metrics for different public transport aspects in Subsection 2.7.2.
PoDiGG, our implementation of the algorithm, accepts a wide range of parameters to
configure the mimicking algorithm. PoDiGG and PoDiGG-LC are able to output the
mimicked data respectively as GTFS and RDF datasets, together with a visualization of
the generated transit network. Our system can be used without requiring any extensive
setup or advanced programming skills, as it consists of simple command lines tools that
can be invoked with a number of optional parameters to configure the generator. Our sys-
tem is proven to be generalizable to other transport types, as we evaluated PoDiGG for
the bus and train transport type, and the Belgium and Netherlands geospatial regions in
Subsection 2.7.2.

2.8.2. Usage within Benchmarks
A synthetic dataset generator, which is one of the main contributions of this work, forms
an essential aspect of benchmarks for (RDF) data management systems [23, 29]. Pre-
scribing a concrete benchmark that includes the evaluation of tasks is out of scope. How-
ever, to provide a guideline on how our dataset generator can be used as part of a bench-
mark, we relate the primary elements of public transport datasets to choke points in data
management systems, i.e., key technical challenges in these systems. Below, we list
choke points related to storage and querying within data management systems and route
planning systems. For each choke point, we introduce example tasks to evaluate them in
the context of public transport datasets. The querying choke points are inspired by the
choke points identified by Petzka et. al. for faceted browsing [30].

1. Storage of entities.
1. Storage of stops, stations, connections, routes, trips and delays.

2. Storage of links between entities.
1. Storage of stops per station.
2. Storage of connections for stops.
3. Storage of the next connection for each connection.
4. Storage of connections per trip.
5. Storage of trips per route.
6. Storage of a connection per delay.

3. Storage of literals.
1. Storage of latitude, longitude, platform code and code of stops.
2. Storage of latitude, longitude and label of stations.

64

3. Storage of delay durations.
4. Storage of the start and end time of connections.

4. Storage of sequences.
1. Storage of sequences of connections.

5. Find instances by property value.
1. Find latitude, longitude, platform code or code by stop.
2. Find station by stop.
3. Find country by station.
4. Find latitude, longitude, or label by station.
5. Find delay by connection.
6. Find next connection by connection.
7. Find trip by connection.
8. Find route by connection.
9. Find route by trip.

6. Find instances by inverse property value.
1. Inverse of examples above.

7. Find instances by a combination of properties values.
1. Find stops by geospatial location.
2. Find stations by geospatial location.

8. Find instances for a certain property path with a certain value.
1. Find the delay value of the connection after a given connection.
2. Find the delay values of all connections after a given connection.

9. Find instances by inverse property path with a certain value.
1. Find stops that are part of a certain trip that passes by the stop at the given
geospatial location.

10. Find instances by class, including subclasses.
1. Find delays of a certain class.

11. Find instances with a numerical value within a certain interval.
1. Find stops by latitude or longitude range.
2. Find stations by latitude or longitude range.
3. Find delays with durations within a certain range.

12. Find instances with a combination of numerical values within a certain interval.
1. Find stops by geospatial range.
2. Find stations by geospatial range.

65

13. Find instances with a numerical interval by a certain value for a certain property
path.

1. Find connections that pass by stops in a given geospatial range.

14. Find instances with a numerical interval by a certain value.
1. Find connections that occur at a certain time.

15. Find instances with a numerical interval by a certain value for a certain property
path.

1. Find trips that occur at a certain time.

16. Find instances with a numerical interval by a certain interval.
1. Find connections that occur during a certain time interval.

17. Find instances with a numerical interval by a certain interval for a certain prop-
erty path.

1. Find trips that occur during a certain time interval.

18. Find instances with numerical intervals by intervals with property paths.
1. Find connections that occur during a certain time interval with stations that
have stops in a given geospatial range.
2. Find trips that occur during a certain time interval with stops in a given
geospatial range.
3. Plan a route that gets me from stop A to stop B starting at a certain time.

This list of choke points and tasks can be used as a basis for benchmarking spatiotempo-
ral data management systems using public transport datasets. For example, SPARQL
queries can be developed based on these tasks and executed by systems using a public
transport dataset. For the benchmarking with these tasks, it is essential that the used
datasets are realistic, as discussed in Subsection 2.7.2. Otherwise, certain choke points
may not resemble the real world. For example, if an unrealistic dataset would contain
only a single trip that goes over all stops, then finding a route between two given stops
could be unrealistically simple.

2.8.3. Limitations and Future Work
In this section, we discuss the limitations of the current mimicking algorithm and its im-
plementation, together with further research opportunities.

2.8.3.1. Memory Usage
The sequential steps in the presented mimicking algorithm require persistence of the in-
termediary data that is generated in each step. Currently, PoDiGG is implemented in such
a way that all data is kept in-memory for the duration of the generation, until it is serial-
ized. When large datasets need to be generated, this requires a larger amount of memory
to be allocated to the generator. Especially for large amounts of routes or connections,

66

where 100 million connections already require almost 10GB of memory to be allocated.
While performance was not the primary concern in this work, in future work, improve-
ments could be made. A first possible solution would be to use a memory-mapped data-
base for intermediary data, so that not all data must remain in memory at all times. An
alternative solution would be to modify the mimicking process to a streaming algorithm,
so that only small parts of data need to be kept in memory for datasets of any size. Con-
sidering the complexity of transit networks, a pure streaming algorithm might not be fea-
sible, because route design requires knowledge of the whole network. The generation of
connections however, could be adapted so that it works as a streaming algorithm.

2.8.3.2. Realism
We aimed to produce realistic transit feeds by reusing the methodologies learned in pub-
lic transit planning. Our current evaluation compares generated output to real datasets, as
no similar generators currently exist. When similar generation algorithms are introduced
in the future, this evaluation can be extended to compare their levels of realism. Our re-
sults showed that all sub-generators, except for the trips generator, produced output with
a high realism value. The trips are still closer to real data than a random generator, but
this can be further improved in future work. This can be done by for instance taking into
account network capacities [19] on certain edges when instantiating routes as trips. This
is because we currently assume infinite edge capacities, which can result in a large
amount of connections over an edge at the same time, which may not be realistic for cer-
tain networks. Alternatively, we could include other factors in the generation algorithm,
such as the location of certain points of interest, such as shopping areas, schools and
tourist spots. In the future, a study could be done to identify and measure the impact of
certain points of interest on transit networks, which could be used as additional input to
the generation algorithm to further improve the level of realism. Next to this, in order to
improve transfer coordination [19], possible transfers between trips should be taken into
account when generating stop times. Limiting the network capacity will also lead to nat-
ural congestion of networks [21], which should also be taken into account for improving
the realism. Furthermore, the total vehicle fleet size [19] should be considered, because
we currently assume an infinite number of available vehicles. It is more realistic to have
a limited availability of vehicles in a network, with the last position of each vehicle being
of importance when choosing the next trip for that vehicle.

2.8.3.3. Alternative Implementations
An alternative way of implementing this generator would be to define declarative depen-
dency rules for public transport networks, based on the work by Pengyue et. al. [22]. This
would require a semantic extension to the engine so that it is aware of the relevant on-
tologies and that it can serialize to one or more RDF formats. Alternatively, machine
learning techniques could be used to automatically learn the structure and characteristics
of real datasets and create similar realistic synthetic datasets [31], or to create variants of
existing datasets [32]. The downside of machine learning techniques is however that it is
typically more difficult to tweak parameters of automatically learned models when spe-

67

cific characteristics of the output need to be changed, when compared to a manually im-
plemented algorithm. Sensitivity analysis could help to determine the impact of such pa-
rameters in order to understand the learned models better.

2.8.3.4. Streaming Extension
Finally, the temporal aspect of public transport networks is useful for the domain of RDF
stream processing [33]. Instead of producing single static datasets as output, PoDiGG
could be adapted to produce RDF streams of connections and delays, where information
about stops and routes are part of the background knowledge. Such an extension can be-
come part of a benchmark, such as CityBench [34] and LSBench [18], for assessing the
performance of RDF stream processing systems with temporal and geospatial capabili-
ties.

2.8.4. PoDiGG In Use
PoDiGG and PoDiGG-LC have been developed for usage within the HOBBIT platform.
This platform is being developed within the HOBBIT project and aims to provide an en-
vironment for benchmarking RDF systems for Big Linked Data. The platform provides
several default dataset generators, including PoDiGG, which can be used to benchmark
RDF systems.
PoDiGG, and its generated datasets are being used in the ESWC Mighty Storage Chal-
lenge 2017 and 2018 [35]. The first task of this challenge consists of RDF data ingestion
into triple stores, and querying over this data. Because of the temporal aspect of public
transport data in the form of connections, PoDiGG datasets are fragmented by connection
departure time, and transformed to a data stream that can be inserted. In task 4 of this
challenge, the efficiency of faceted browsing solutions is benchmarked [30]. In this work,
a list of choke points are identified regarding SPARQL queries on triple stores, which in-
cludes points such as the selection of subclasses and property-path transitions. Because
of the geographical property of public transport data, PoDiGG datasets are being used for
this benchmark.
Finally, PoDiGG is being used for creating virtual transit networks of variable size for the
purposes of benchmarking route planning frameworks, such as Linked Connections [11].

2.9. Conclusions
In this article, we introduced a mimicking algorithm for public transport data, based on
steps that are used in real-world transit planning. Our method splits this process into sev-
eral sub-generators and uses population distributions of an area as input. As part of this
article, we introduced PoDiGG, a reusable framework that accepts a wide range of para-
meters to configure the generation algorithm.
Results show that the structuredness of generated datasets are similar to real public trans-
port datasets. Furthermore, we introduced several functions for measuring the realism of
synthetic public transport datasets compared to a gold standard on several levels, based
on distance functions. The realism was confirmed for different regions and transport

68

types. Finally, the execution times and memory usages were measured when increasing
the most important parameters, which showed a linear increase for each parameter, show-
ing that the generator is able to scale to large dataset outputs.
The public transport mimicking algorithm we introduced, with PoDiGG and PoDiGG-LC
as implementations, is essential for properly benchmarking the efficiency and perfor-
mance of public transport route planning systems under a wide range of realistic, but syn-
thetic circumstances. Flexible configuration allows datasets of any size to be created and
various characteristics to be tweaked to achieve highly specialized datasets for testing
specific use cases. In general, our dataset generator can be used for the benchmarking of
geospatial and temporal RDF data management systems, and therefore lowers the barrier
towards more efficient and performant systems.

Acknowledgements
We wish to thank Henning Petzka for his help with discovering issues and providing use-
ful suggestions for the PoDiGG implementation. The described research activities were
funded by the H2020 project HOBBIT (#688227).

69

Chapter 3.
Storing Evolving Data
In this chapter, we tackle the second challenge of this PhD, which is: “Indexing evolving
data involves a trade-off between storage size and lookup efficiency”. Since evolving
knowledge graphs add a temporal dimension to regular knowledge graphs, new storage
and querying techniques are required. A naive way to handle this temporal dimension
would be to store each knowledge graph version as a separately materialized knowledge
graph. This can however introduce a tremendous storage overhead when consecutive ver-
sions are similar to each other. Furthermore, querying over such a naive storage method
would require going through all of these versions, which does not scale well with many
versions.
The focus of our work in this chapter is to come up with a Web-friendly trade-off be-
tween storage size and lookup efficiency, so that evolving knowledge graphs can be pub-
lished on the Web without requiring high-end machines. We introduce a new indexing
technique for evolving data, that focuses on querying in a stream-based manner. This al-
lows results to be sent to the client from the moment that they are found, which reduces
waiting time compared to batch-based querying. Streaming is especially useful when the
number of results is very large, and is memory friendly for machines with limited
capabilities.
This chapter is based on the research question: “How can we store RDF archives to en-
able efficient versioned triple pattern queries with offsets?” We focus on triple pattern
queries, as these are the fundamental building blocks for more complex SPARQL queries
over knowledge graphs. For example, the Triple Pattern Fragments interface [36] exposes
triple pattern access to datasets, which is sufficient for evaluating complex SPARQL
queries on top of this. We answer our research question by introducing a storage tech-
nique that introduces various temporal indexes next to the typical indexes that are re-
quired for knowledge graphs. These indexes are essential for achieving efficient querying
for different kinds of versioned queries. We extensively evaluate this approach based on
our implementation OSTRICH. Our results show that our method achieves a trade-off be-
tween storage size and lookup efficiency that is useful for hosting evolving knowledge
graphs on the Web. Concretely, at the cost of an increase in storage size and ingestion
time, query execution time is significantly reduced. As storage is typically cheap, and in-
gestion can happen offline, this trade-off is acceptable in a Web environment.

70

Ruben Taelman, Miel Vander Sande, Joachim Van Herwegen, Erik Mannens, and Ruben
Verborgh. 2019. Triple Storage for Random-Access Versioned Querying of RDF
Archives. Journal of Web Semantics 54 (January 2019), 4–28.

Abstract
When publishing Linked Open Datasets on the Web, most attention is typ-
ically directed to their latest version. Nevertheless, useful information is
present in or between previous versions. In order to exploit this historical
information in dataset analysis, we can maintain history in RDF archives.
Existing approaches either require much storage space, or they expose an
insufficiently expressive or efficient interface with respect to querying de-
mands. In this article, we introduce an RDF archive indexing technique
that is able to store datasets with a low storage overhead, by compressing
consecutive versions and adding metadata for reducing lookup times. We
introduce algorithms based on this technique for efficiently evaluating
queries at a certain version, between any two versions, and for versions.
Using the BEAR RDF archiving benchmark, we evaluate our implementa-
tion, called OSTRICH. Results show that OSTRICH introduces a new
trade-off regarding storage space, ingestion time, and querying efficiency.
By processing and storing more metadata during ingestion time, it signifi-
cantly lowers the average lookup time for versioning queries. OSTRICH
performs better for many smaller dataset versions than for few larger
dataset versions. Furthermore, it enables efficient offsets in query result
streams, which facilitates random access in results. Our storage technique
reduces query evaluation time for versioned queries through a preprocess-
ing step during ingestion, which only in some cases increases storage
space when compared to other approaches. This allows data owners to
store and query multiple versions of their dataset efficiently, lowering the
barrier to historical dataset publication and analysis.

3.1. Introduction
In the area of data analysis, there is an ongoing need for maintaining the history of
datasets. Such archives can be used for looking up data at certain points in time, for re-
questing evolving changes, or for checking the temporal validity of these data [37]. With
the continuously increasing number of Linked Open Datasets [5], archiving has become
an issue for RDF [3] data as well. While the RDF data model itself is atemporal, Linked
Datasets typically change over time [38] on dataset, schema, and/or instance level [39].
Such changes can include additions, modifications, or deletions of complete datasets, on-
tologies, and separate facts. While some evolving datasets, such as DBpedia [40], are
published as separate dumps per version, more direct and efficient access to prior ver-
sions is desired.

71

Consequently, RDF archiving systems emerged that, for instance, support query engines
that use the standard SPARQL query language [4]. In 2015, however, a survey on ar-
chiving Linked Open Data [37] illustrated the need for improved versioning capabilities,
as current approaches have scalability issues at Web-scale. They either perform well for
versioned query evaluation—at the cost of large storage space requirements—or require
less storage space—at the cost of slower query evaluation. Furthermore, no existing solu-
tion performs well for all versioned query types, namely querying at, between, and for
different versions. An efficient RDF archive solution should have a scalable storage mod-
el, efficient compression, and indexing methods that enable expressive versioned query-
ing [37].
In this article, we argue that supporting both RDF archiving and SPARQL at once is dif-
ficult to scale due to their combined complexity. Instead, we propose an elementary but
efficient versioned triple pattern index. Since triple patterns are the basic element of
SPARQL, such indexes can serve as an entry point for query engines. Our solution is ap-
plicable as: (a) an alternative index with efficient triple-pattern-based access for existing
engines, in order to improve the efficiency of more expressive SPARQL queries; and (b)
a data source for the Web-friendly Triple Pattern Fragments [36] (TPF) interface, i.e., a
Web API that provides access to RDF datasets by triple patterns and partitions the results
in pages. We focus on the performance-critical features of stream-based results, query
result offsets, and cardinality estimation. Stream-based results allow more memory-effi-
cient processing when query results are plentiful. The capability to efficiently offset (and
limit) a large stream reduces processing time if only a subset is needed. Cardinality esti-
mation is essential for efficient query planning [36, 41] in many query engines.
Concretely, this work introduces a storage technique with the following contributions:

a scalable versioned and compressed RDF index with offset support and result
streaming;
efficient query algorithms to evaluate triple pattern queries and perform cardinality
estimation at, between, and for different versions, with optional offsets;
an open-source implementation of this approach called OSTRICH;
an extensive evaluation of OSTRICH compared to other approaches using an exist-
ing RDF archiving benchmark.

The main novelty of this work is the combination of efficient offset-enabled queries over
a new index structure for RDF archives. We do not aim to compete with existing ver-
sioned SPARQL engines—full access to the language can instead be leveraged by differ-
ent engines, or by using alternative RDF publication and querying methods such as the
HTTP interface-based TPF approach. Optional versioning capabilities are possible for
TPF by using VTPF [42], or datetime content-negotiation [43] through Memento [44].
This article is structured as follows. In the following section, we start by introducing the
related work and our problem statement in Section 3.3. Next, in Section 3.4, we intro-
duce the basic concepts of our approach, followed by our storage approach in
Section 3.5, our ingestion algorithms in Section 3.6, and the accompanying querying al-
gorithms in Section 3.7. After that, we present and discuss the evaluation of our imple-
mentation in Section 3.8. Finally, we present our conclusions in Section 3.9.

72

3.2. Related Work
In this section, we discuss existing solutions and techniques for indexing and compres-
sion in RDF storage, without archiving support. Then, we compare different RDF ar-
chiving solutions. Finally, we discuss suitable benchmarks and different query types for
RDF archives. This section does not contain an exhaustive list of all relevant solutions
and techniques, instead, only those that are most relevant to this work are mentioned.

3.2.1. General RDF Indexing and Compression
RDF storage systems typically use indexing and compression techniques for reducing
query times and storage space. These systems can either be based on existing database
technologies, such as relational databases [45] or document stores [46], or on techniques
tailored to RDF. These technologies can even be combined, such as approaches that de-
tect emergent schemas [47, 48] in RDF datasets, which allow parts of the data to be
stored in relational databases in order to increase compression and improve the efficiency
of query evaluation. These emergent schemas are recently being exploited as characteris-
tics sets in native RDF approaches [49, 50]. For the remainder of this article, we focus on
the RDF-specific techniques that have direct relevance to our approach.
RDF-3X [41] is an RDF storage technique that is based on a clustered B+Tree with 15
indexes in which triples are sorted lexicographically. Given that a triple consists of a sub-
ject (S), predicate (P) and object (O), it includes six indexes for different triple compo-
nent orders (SPO, SOP, OSP, OPS, PSO and POS), six aggregated indexes (SP, SO, PS,
PO, OS, and OP), and three one-valued indexes (S, P, and O). A dictionary is used to
compress common triple components. When evaluating SPARQL queries, optimal index-
es can be selected based on the query’s triple patterns. Furthermore, the store allows up-
date operations. In our storage approach, we will reuse the concept of multiple indexes
and encoding triple components in a dictionary.
Hexastore [51] is a similar approach as it uses six different sorted lists, one for each pos-
sible triple component order. Also, it uses dictionary encoding to compress common
triple components. An alternative is Triplebit [52], which is based on a two-dimensional
storage matrix. Columns correspond to predicates, and rows to subjects and objects. This
sparse matrix is compressed and dictionary-encoded to reduce storage requirements. Fur-
thermore, it uses auxiliary index structures to improve index selection during query
evaluation.
K2-Triples [53] is another RDF storage technique that uses k2-tree structures to the data,
which results in high compression rates. These structures allow SPARQL queries to be
evaluated in memory without decompressing the structures.
RDFCSA [54] is a compact RDF storage technique. It is a self-index that stores the data
together with its index, which results in less storage space than raw storage. Furthermore,
it is built on the concept of compressed suffix arrays, which compresses text while still
allowing efficient pattern-based search on it. RDFCSA requires about twice the storage
space compared to K2-Triples, but it is faster for most queries.
HDT [55] is a binary RDF representation that is highly compressed and provides index-
ing structures that enable efficient querying. It consists of three main components:

73

Header

Dictionary

Storage

metadata describing the dataset

mapping between triple components and unique IDs for reducing storage re-
quirements of triples

actual triples based on the IDs of the triple components

The dictionary component encodes triple components in four subsets. The first subset
consists of triple components that exist both as subject and objects. The second and third
subset respectively consists of the non-common subject and object component. The last
subset consists of the predicate components. The storage part encodes triple components
using the dictionary, compacts the triples in a sorted predicate and object adjacency list,
and stores these adjacency list in a bitmap structure that efficiently indicates the borders
of these consecutive adjacency list. By default, HDT only stores triples in the SPO-order.
When querying is required, enhanced triple indexes are constructed to allow any triple
pattern to be resolved efficiently based on the HDT-FoQ [56] approach. HDT archives
are read-only, which leads to high efficiency and compressibility, but makes them unsuit-
able for cases where datasets change frequently. Its fast triple pattern queries and high
compression rate make it an appropriate backend storage method for TPF [36] servers.
Approaches like LOD Laundromat [57] combine HDT and TPF for hosting and publish-
ing 650K+ Linked Datasets containing 38B+ triples, proving its usefulness at large scale.
Because of these reasons, we will reuse HDT snapshots as part of our storage solution.

3.2.2. RDF Archiving
Linked Open Datasets typically change over time [38], creating a need for maintaining
the history of the datasets [37]. Hence, RDF archiving has been an active area of research
over the last couple of years. In the domain of non-RDF graph databases, several graph
database extensions exist. These extensions are either wrapper-based [58, 59], which
leads to sub-optimal querying due to the lack of indexing, or they are based on changing
the graph model [60, 61], which complicates the writing of queries. Furthermore, none of
the existing non-RDF graph stores offer native versioning capabilities at the time of writ-
ing. We therefore only discuss RDF archiving for the remainder of this section.
Fernández et al. formally define an RDF archive [62] as follows: An RDF archive graph
A is a set of version-annotated triples. Where a version-annotated triple (s, p, o):[i] is
defined as an RDF triple (s, p, o) with a label i ∈ N representing the version in which this
triple holds. The set of all RDF triples [3] is defined as (U ∪ B) × U × (U ∪ B ∪ L),
where U, B, and L, respectively represent the disjoint, infinite sets of URIs, blank nodes,
and literals. Furthermore, an RDF version of an RDF archive A at snapshot i is the RDF
graph A(i) = {(s, p, o)|(s, p, o):[i] ∈ A}. For the remainder of this article, we use the no-
tation Vi to refer to the RDF version A(i).
The DIACHRON data model [39] introduces the concept of diachronic datasets, i.e.,
datasets that contain diachronic entities, which are semantic entities that evolve over
time. This data model formally defines a diachronic dataset as a set of dataset versions
together with metadata annotations about this dataset. Each dataset version is defined as a

74

set of records (i.e., tuples or triples), an associated schema, temporal information about
this version and metadata specific to this version. Domain data must be reified in order to
store it in the DIACHRON model. Due to the simplicity of RDF archive model compared
to the domain-specific DIACHRON data model, we will use the model of Fernández et
al. for the remainder of this document.
Systems for archiving Linked Open Data are categorized into three non-orthogonal stor-
age strategies [37]:

The Independent Copies (IC) approach creates separate instantiations of datasets
for each change or set of changes.
The Change-Based (CB) approach instead only stores change sets between
versions.
The Timestamp-Based (TB) approach stores the temporal validity of facts.

In the following sections, we discuss several existing RDF archiving systems, which use
either pure IC, CB or TB, or hybrid IC/CB. Table 5 shows an overview of the discussed
systems.

3.2.2.1. Independent copies approaches
SemVersion [63] was one of the first works to look into tracking different versions of
RDF graphs. SemVersion is based on Concurrent Versions System (CVS) concepts to
maintain different versions of ontologies, such as diff, branching and merging. Their ap-
proach consists of a separation of language-specific features with ontology versioning
from general features together with RDF versioning. Unfortunately, the implementation
details on triple storage and retrieval are unknown.

Name IC CB TB

SemVersion [63] X

Cassidy et. al. [64] X

R&WBase [65] X

R43ples [66] X

Hauptman et. al. [67] X

X-RDF-3X [68] X

RDF-TX [69] X

v-RDFCSA [70] X

Dydra [71] X

TailR [72] X X

Table 5: Overview of RDF archiving solutions with their corresponding storage
strategy: Individual copies (IC), Change-based (CB), or Timestamp-based (TB).

75

3.2.2.2. Change-based approaches
Based on the Theory of Patches from the Darcs software management system [73], Cas-
sidy et. al. [64] propose to store changes to graphs as a series of patches, which makes it
a CB approach. They describe operations on versioned graphs such as reverse, revert and
merge. An implementation of their approach is provided using the Redland python library
and MySQL by representing each patch as a named graph and serializing it in TriG [74].
Furthermore, a preliminary evaluation shows that their implementation is significantly
slower than a native RDF store. They suggest a native implementation of the approach to
avoid some of the overhead.
Im et. al. [75] propose a CB patching system based on a relational database. In their ap-
proach, they use a storage scheme called aggregated deltas which associates the latest
version with each of the previous ones. While aggregated deltas result in fast delta
queries, they introduce much storage overhead.
R&WBase [65] is a CB versioning system that adds an additional versioning layer to ex-
isting quad-stores. It adds the functionality of tagging, branching and merging for
datasets. The graph element is used to represent the additions and deletions of patches,
which are respectively the even and uneven graph IDs. Queries are resolved by looking at
the highest even graph number of triples.
Graube et. al. introduce R43ples [66] which stores change sets as separate named graphs,
making it a CB system. It supports the same versioning features as R&WBase and intro-
duces new SPARQL keywords for these, such as REVISION, BRANCH and TAG. As
reconstructing a version requires combining all change sets that came before, queries at a
certain version are only usable for medium-sized datasets.

3.2.2.3. Timestamp-based approaches
Hauptman et. al. introduce a similar delta-based storage approach [67] by storing each
triple in a different named graph as a TB storage approach. The identifying graph of each
triple is used in a commit graph for SPARQL query evaluation at a certain version. Their
implementation is based on Sesame [76] and Blazegraph [77] and is slower than snap-
shot-based approaches, but uses less disk space.
X-RDF-3X [68] is an extension of RDF-3X [41] which adds versioning support using the
TB approach. On storage-level, each triple is annotated with a creation and deletion time-
stamp. This enables time-travel queries where only triples valid at the given time are
returned.
RDF-TX [69] is an in-memory query engine that supports a temporal SPARQL querying
extension. The system is based on compressed multi-version B+Trees that outperforms
similar systems such as X-RDF-3X in terms of querying efficiency. The required storage
space after indexing is similar to that of X-RDF-3X.
v-RDFCSA [70] is a self-indexing RDF archive mechanism, based on the RDF self-in-
dex RDFCSA [54], that enables versioning queries on top of compressed RDF archives
as a TB approach. They evaluate their approach using the BEAR [62] benchmark and

76

BEAR-A

BEAR-B

show that they can reduce storage space requirements 60 times compared to raw storage.
Furthermore, they reduce query evaluation times more than an order of magnitude com-
pared to state of the art solutions.
Dydra [71] is an RDF graph storage platform with dataset versioning support. They intro-
duce the REVISION keyword, which is similar to the GRAPH SPARQL keyword for re-
ferring to different dataset versions. Their implementation is based on B+Trees that are
indexed in six ways GSPO, GPOS, GOSP, SPOG, POSG, OSPG. Each B+Tree value in-
dicates the revisions in which a particular quad exists, which makes it a TB approach.

3.2.2.4. Hybrid approaches
TailR [72] is an HTTP archive for Linked Data pages based on the Memento
protocol [44] for retrieving prior versions of certain HTTP resources. It is a hybrid CB/IC
approach as it starts by storing a dataset snapshot, after which only deltas are stored for
each consecutive version, as shown in Fig. 15. When the chain becomes too long, or oth-
er conditions are fulfilled, a new snapshot is created for the next version to avoid long
version reconstruction times.
Results show that this is an effective way of reducing version reconstruction times [72],
in particular for many versions. Within the delta chain, however, an increase in version
reconstruction times can still be observed. Furthermore, it requires more storage space
than pure delta-based approaches.
The authors’ implementation is based on a relational database system. Evaluation shows
that resource lookup times for any version ranges between 1 and 50 ms for 10 versions
containing around 500K triples. In total, these versions require ~64MB of storage space.

3.2.3. RDF Archiving Benchmarks
BEAR [62] is a benchmark for RDF archive systems. The BEAR benchmark is based on
three real-world datasets from different domains:

58 weekly snapshots from the Dynamic Linked Data Observatory [38]. This is
the main dataset from the article on BEAR [62].

The 100 most volatile resources from DBpedia Live [78] over the course of
three months as three different granularities: instant, hour and day.

Fig. 15: Delta chain in which deltas are relative to the previous delta, as is done in
TailR [72].

77

BEAR-C Dataset descriptions from the Open Data Portal Watch [79] project over the
course of 32 weeks.

The 58 versions of BEAR-A contain between 30M and 66M triples per version, with an
average change ratio of 31%. BEAR-A provides triple pattern queries for three different
versioned query types for both result sets with a low and a high cardinality. The queries
are selected in such a way that they will be evaluated over triples of a certain dynamicity,
which requires the benchmarked systems to handle this dynamicity well. BEAR-B pro-
vides a small collection of triple pattern queries corresponding to the real-world usage of
DBpedia. Finally, BEAR-C provides 10 complex SPARQL queries that were created with
the help of Open Data experts.
BEAR provides baseline RDF archive implementations based on HDT [55] and
Jena’s [80] TDB store for the IC, CB, and TB approaches, but also hybrid IC/CB and
TB/CB approaches. The hybrid approaches are based on snapshots followed by delta
chains, as implemented by TailR [72]. Due to HDT not supporting quads, the TB and
TB/CB approaches could not be implemented in the HDT baseline implementations.
Results show that IC for both Jena and HDT requires more storage space than the com-
pressed deltas for the three datasets. CB results in less storage space for both approaches
for BEAR-A and BEAR-B, but not for BEAR-C because that dataset is so dynamic that
the deltas require more storage space than they would with IC. Jena-TB results in the
least storage space of Jena-based approaches, however, it fails for BEAR-B-instant be-
cause of the large amount of versions as Jena is less efficient for many graphs.
The hybrid approaches are evaluated with different delta chain lengths and expectedly
show that shorter delta chains lead to results similar to IC, and longer delta chains lead
are similar to CB or TB. The queries for BEAR-A and BEAR-B show that IC results in
constant evaluation times for any version, CB times increase for each following version,
and TB also result in constant times. The HDT-based approaches outperform Jena in all
cases because of its compressed nature. The IC/CB hybrid approaches similarly show in-
creasing evaluation times for each version, with a drop each time a new snapshot is creat-
ed. The IC/TB hybrid Jena approach has slowly increasing evaluation times for each ver-
sion, but they are significantly lower than the regular TB approach.
The queries of BEAR-C currently can not be solved by the archiving strategies in a
straightforward way, but they are designed to help foster the development of future RDF
archiving solutions. While queries of BEAR-A and BEAR-B are just triple pattern
queries and therefore do not cover the full SPARQL spectrum, they provide the basis for
more complex queries, as is proven by the TPF framework [36], which makes them suffi-
cient for benchmarking.
EvoGen [81] is an RDF archive systems benchmark that is based on the synthetic LUBM
dataset generator [7]. It is an extension of the LUBM generator with additional classes
and properties for introducing dataset evolution on schema-level. EvoGen enables the
user to tweak parameters of the dataset and query generation process, for example to
change the dataset dynamicity and the number of versions.

78

While EvoGen offers more flexibility than BEAR in terms of configurability. BEAR pro-
vides real-world datasets and baseline implementations which lowers the barrier towards
its usage. Hence, we will use the BEAR dataset in this work for benchmarking our
system.

3.2.4. Query atoms
The query atoms that will be introduced in this section are based on the RDF data
model [3] and SPARQL query language [4]. In these models, a triple pattern is defined
as an element in (U ∪ V) × (U ∪ V) × (U ∪ L ∪ V), with V being the infinite set of vari-
ables. A set of triple patterns is called a Basic Graph Pattern, which forms the basis of a
SPARQL query. The evaluation of a SPARQL query Q on an RDF graph G containing
RDF triples, produces a bag of solution mappings [[Q]]G.
To cover the retrieval demands in RDF archiving, five foundational query types were in-
troduced [62], which are referred to as query atoms:

1. Version materialization (VM) retrieves data using a query Q targeted at a single
version Vi. Formally: VM(Q, Vi) = [[Q]]Vi. Example: Which books were present in
the library yesterday?
2. Delta materialization (DM) retrieves query Q’s result change sets between two
versions Vi and Vj. Formally: DM(Q, Vi, Vj)=(Ω+, Ω−). With Ω+ = [[Q]]Vi \ [[Q]]Vj

and Ω− = [[Q]]Vj \ [[Q]]Vi. Example: Which books were returned or taken from the
library between yesterday and now?
3. Version query (VQ) annotates query Q’s results with the versions (of RDF ar-
chive A) in which they are valid. Formally: VQ(Q, A) = {(Ω, W) | W = {A(i) | Ω=
[[Q]]A(i), i ∈ N} ∧ Ω ≠ ∅}. Example: At what times was book X present in the
library?
4. Cross-version join (CV) joins the results of two queries (Q1 and Q2) between
versions Vi and Vj. Formally: VM(Q1, Vi) ⨝ VM(Q2, Vj). Example: What books were
present in the library yesterday and today?
5. Change materialization (CM) returns a list of versions in which a given query Q
produces consecutively different results. Formally: {(i, j) | i,j ∈ ℕ, i < j, DM(Q, A(i),
A(j)) = (Ω+, Ω−), Ω+ ∪ Ω− ≠ ∅, ∄ k ∈ ℕ : i < k < j}. Example: At what times was
book X returned or taken from the library?

There exists a correspondence between these query atoms and the independent copies
(IC), change-based (CB), and timestamp-based (TB) storage strategies.
Namely, VM queries are efficient in storage solutions that are based on IC, because there
is indexing on version. On the other hand, IC-based solutions may introduce a large
amount of overhead in terms of storage space because each version is stored separately.
Furthermore, DM and VQ queries are less efficient for IC solutions. That is because DM
queries require two fully-materialized versions to be compared on-the-fly, and VQ re-
quires all versions to be queried at the same time.

79

DM queries can be efficient in CB solutions if the query version ranges correspond to the
stored delta ranges. In all other cases, as well as for VM and VQ queries, the desired ver-
sions must be materialized on-the-fly, which will take increasingly more time for longer
delta chains. CB solutions do however typically require less storage space than VM if
there is sufficient overlap between each consecutive version.
Finally, VQ queries perform well for TB solutions because the timestamp annotation di-
rectly corresponds to VQ’s result format. VM and DM queries in this case are typically
less efficient than for IC approaches, due to the missing version index. Furthermore, TB
solutions can require less storage space compared to VM if the change ratio of the dataset
is not too large.
In summary, IC, CB and TB approaches can perform well for certain query types, but
they can be slow for others. On the other hand, this efficiency typically comes at the cost
of a large storage overhead, as is the case for IC-based approaches.
DIACHRON QL [39] is a SPARQL query language extension based on the DIACHRON
data model that provides functionality similar to these query atoms in order to query spe-
cific versions, changesets, or all versions.

3.3. Problem statement
As mentioned in Section 3.1, no RDF archiving solutions exist that allow efficient triple
pattern querying at, between, and for different versions, in combination with a scalable
storage model and efficient compression. In the context of query engines, streams are
typically used to return query results, on which offsets and limits can be applied to re-
duce processing time if only a subset is needed. Offsets are used to skip a certain amount
of elements, while limits are used to restrict the number of elements to a given amount.
As such, RDF archiving solutions should also allow query results to be returned as offset-
table streams. The ability to achieve such stream subsets is limited in existing solutions.
This leads us to the following research question:

How can we store RDF archives to enable efficient VM, DM and VQ triple pattern
queries with offsets?

The focus of this article is evaluating version materialization (VM), delta materialization
(DM), and version (VQ) queries efficiently, as CV and CM queries can be expressed in
terms of the other ones [82]. In total, our research question identifies the following
requirements:

an efficient RDF archive storage technique;
VM, DM and VQ triple pattern querying algorithms on top of this storage
technique;
efficient offsetting of the VM, DM, and VQ query result streams.

In this work, we lower query evaluation times by processing and storing more metadata
during ingestion time. Instead of processing metadata during every lookup, this happens
only once per version. This will increase ingestion times, but will improve the efficiency
of performance-critical features within query engines and Linked Data interfaces, such as
querying with offsets. To this end, we introduce the following hypotheses:

80

1. Our approach shows no influence of the selected versions on the querying effi-
ciency of VM and DM triple pattern queries.
2. Our approach requires less storage space than state-of-the-art IC-based
approaches.
3. For our approach, querying is slower for VM and equal or faster for DM and VQ
than in state-of-the-art IC-based approaches.
4. Our approach requires more storage space than state-of-the-art CB-based
approaches.
5. For our approach, querying is equal or faster than in state-of-the-art CB-based
approaches.
6. Our approach reduces average query time compared to other non-IC approaches
at the cost of increased ingestion time.

3.4. Overview of Approaches
In this section, we lay the groundwork for the following sections. We introduce funda-
mental concepts that are required in our storage approach and its accompanying querying
algorithms, which will be explained in Section 3.5 and Section 3.7, respectively.
To combine smart use of storage space with efficient processing of VM, DM, and VQ
triple pattern queries, we employ a hybrid approach between the individual copies (IC),
change-based (CB), and timestamp-based (TB) storage techniques (as discussed in Sec-
tion 3.2). In summary, intermittent fully materialized snapshots are followed by delta
chains. Each delta chain is stored in six tree-based indexes, where values are dictionary-
encoded and timestamped to reduce storage requirements and lookup times. These six
indexes correspond to the combinations for storing three triple component orders sepa-
rately for additions and deletions. The indexes for the three different triple component
orders ensure that any triple pattern query can be resolved quickly. The additions and
deletions are stored separately because access patterns to additions and deletions in deltas
differ between VM, DM, and VQ queries. To efficiently support inter-delta DM queries,
each addition and deletion value contains a local change flag that indicates whether or
not the change is relative to the snapshot. Finally, in order to provide cardinality estima-
tion for any triple pattern, we store an additional count data structure.
In the following sections, we discuss the most important distinguishing features of our
approach. We elaborate on the novel hybrid IC/CB/TB storage technique that our ap-
proach is based on, the reason for using multiple indexes, having local change metadata,
and methods for storing addition and deletion counts.

3.4.1. Snapshot and Delta Chain
Our storage technique is partially based on a hybrid IC/CB approach similar to Fig. 15.
To avoid increasing reconstruction times, we construct the delta chain in an aggregated
deltas [75] fashion: each delta is independent of a preceding delta and relative to the clos-
est preceding snapshot in the chain, as shown in Fig. 16. Hence, for any version, recon-
struction only requires at most one delta and one snapshot. Although this does increase

81

possible redundancies within delta chains, due to each delta inheriting the changes of its
preceding delta, the overhead can be compensated with compression, which we discuss
in Section 3.5.

3.4.2. Multiple Indexes
Our storage approach consists of six different indexes that are used for separately storing
additions and deletions in three different triple component orders, namely: SPO, POS and
OSP. These indexes are B+Trees, thereby, the starting triple for any triple pattern can be
found in logarithmic time. Consequently, the next triples can be found by iterating
through the links between each tree leaf. Table 6 shows an overview of which triple pat-
terns can be mapped to which index. In contrast to other approaches [41, 51] that ensure
certain triple orders, we use three indexes instead of all six possible component orders,
because we only aim to reduce the iteration scope of the lookup tree for any triple pat-
tern. For each possible triple pattern, we now have an index that locates the first triple
component in logarithmic time, and identifies the terminating element of the result
stream without necessarily having to iterate to the last value of the tree. For some scenar-
ios, it might be beneficial to ensure the order of triples in the result stream, so that more
efficient stream joining algorithms can be used, such as sort-merge join. If this would be
needed, OPS, PSO and SOP indexes could optionally be added so that all possible triple
orders would be available.

Fig. 16: Delta chain in which deltas are relative to the snapshot at the start of the
chain, as part of our approach.

Triple pattern SPO SP? S?O S?? ?PO ?P? ??O ???

OSTRICH SPO SPO OSP SPO POS POS OSP SPO

HDT-FoQ SPO SPO SPO SPO OPS PSO OPS SPO

Table 6: Overview of which triple patterns are queried inside which index in
OSTRICH and HDT-FoQ.

82

Our approach could also act as a dedicated RDF archiving solution without (necessarily
efficient) querying capabilities. In this case, only a single index would be required, such
as SPO, which would reduce the required storage space even further. If querying would
become required afterwards, the auxiliary OSP and POS indexes could still be derived
from this main index during a one-time, pre-querying processing phase.
This technique is similar to the HDT-FoQ [56] extension for HDT that adds additional
indexes to a basic HDT file to enable faster querying for any triple pattern. The main dif-
ference is that HDT-FoQ uses the indexes OSP, PSO and OPS, with a different triple pat-
tern to index mapping as shown in Table 6. We chose our indexes in order to achieve a
more balanced distribution from triple patterns to index, which could lead to improved
load balancing between indexes when queries are parallelized. HDT-FoQ uses SPO for
five triple pattern groups, OPS for two and PSO for only a single group. Our approach
uses SPO for 4 groups, POS for two and OSP for two. Future work is needed to evaluate
the distribution for real-world queries. Additionally, the mapping from patterns S?O to
index SPO in HDT-FoQ will lead to suboptimal query evaluation when a large number of
distinct predicates is present.

3.4.3. Local Changes
A delta chain can contain multiple instances of the same triple, since it could be added in
one version and removed in the next. Triples that revert a previous non-local-change (ad-
dition or deletion) within the same delta chain, are called local changes, and are impor-
tant for query evaluation. Determining the locality of changes can be costly, thus we pre-
calculate this information during ingestion time and store it for each versioned triple, so
that this does not have to happen during query-time.
When evaluating version materialization queries by combining a delta with its snapshot,
all local changes should be filtered out. For example, a triple A that was deleted in ver-
sion 1, but re-added in version 2, is cancelled out when materializing against version 2.
For delta materialization, these local changes should be taken into account, because triple
A should be marked as a deletion between versions 0 and 1, but as an addition between
versions 1 and 2. Finally, for version queries, this information is also required so that the
version ranges for each triple can be determined.

3.4.4. Addition and Deletion counts
Parts of our querying algorithms depend on the ability to efficiently count the exact num-
ber of additions or deletions in a delta. Instead of naively counting triples by iterating
over all of them, we propose two separate approaches for enabling efficient addition and
deletion counting in deltas.
For additions, we store an additional mapping from triple pattern and version to number
of additions so that counts can happen in constant time by just looking them up in the
map. For deletions, we store additional metadata in the main deletions tree. Both of these
approaches will be further explained in Section 3.5.

83

3.5. Hybrid Multiversion Storage
In this section, we introduce our hybrid IC/CB/TB storage approach for storing multiple
versions of an RDF dataset. Fig. 17 shows an overview of the main components. Our ap-
proach consists of an initial dataset snapshot—stored in HDT [55]—followed by a delta
chain (similar to TailR [72]). The delta chain uses multiple compressed B+Trees for a
TB-storage strategy (similar to Dydra [71]), applies dictionary-encoding to triples, and
stores additional metadata to improve lookup times. In this section, we discuss each com-
ponent in more detail. In the next section, we describe two ingestion algorithms based on
this storage structure.

Throughout this section, we will use the example RDF archive from Table 7 to illustrate
the different storage components with.

Fig. 17: Overview of the main components of our hybrid IC/CB/TB storage approach.

84

3.5.1. Snapshot storage
As mentioned before, the start of each delta chain is a fully materialized snapshot. In or-
der to provide sufficient efficiency for VM, DM and VQ querying with respect to all ver-
sions in the chain, we assume the following requirements for the snapshot storage:

Any triple pattern query must be resolvable as triple streams.
Offsets must be applicable to the result stream of any triple pattern query.
Cardinality estimation for all triple pattern queries must be possible.

These requirements are needed for ensuring the efficiency of the querying algorithms that
will be introduced in Chapter 4. For the implementation of snapshots, existing techniques
such as HDT [55] fulfill all these requirements. Therefore, we do not introduce a new
snapshot approach, but use HDT in our implementation. This will be explained further in
Subsection 3.8.1.

3.5.2. Delta Chain Dictionary
A common technique in RDF indexes [55, 41, 52] is to use a dictionary for mapping
triple components to numerical IDs. This is done for three main reasons: 1) reduce stor-
age space if triple components are stored multiple times; 2) reducing I/O overhead when
retrieving data; and 3) simplify and optimize querying. As our storage approach essen-
tially stores each triple three or six times, a dictionary can significantly reduce storage
space requirements.
Each delta chain consists of two dictionaries, one for the snapshot and one for the deltas.
The snapshot dictionary consists of triple components that already existed in the snap-
shot. All other triple components are stored in the delta dictionary. This dictionary is
shared between the additions and deletions, as the dictionary ignores whether or not the
triple is an addition or deletion. How this distinction is made will be explained in Subsec-

Version Triple

0 :Bob foaf:name "Bobby"

1 :Alice foaf:name "Alice"

1 :Bob foaf:name "Bobby"

2 :Bob foaf:name "Bob"

3 :Alice foaf:name "Alice"

3 :Bob foaf:name "Bob"

Table 7: Example of a small RDF archive with 4 versions. We assume the following
URI prefixes: : http://example.org, foaf:

http://xmlns.com/foaf/0.1/

85

tion 3.5.3. The snapshot dictionary can be optimized and sorted, as it will not change
over time. The delta dictionary is volatile, as each new version can introduce new
mappings.
During triple encoding (i.e., ingestion), the snapshot dictionary will always first be
probed for existence of the triple component. If there is a match, that ID is used for stor-
ing the delta’s triple component. To identify the appropriate dictionary for triple decod-
ing, a reserved bit is used where 1 indicates snapshot dictionary and 0 indicates the delta
dictionary. The text-based dictionary values can be compressed to reduce storage space
further, as they are likely to contain many redundancies.
Table 8 contains example encodings of the triple components.

3.5.3. Delta Storage
In order to cope with the newly introduced redundancies in our delta chain structure, we
introduce a delta storage method similar to the TB storage strategy, which is able to com-
press redundancies within consecutive deltas. In contrast to a regular TB approach, which
stores plain timestamped triples, we store timestamped triples annotated with a flag for
addition or deletion. An overview of this storage technique is shown in Fig. 18, which
will be explained in detail hereafter.

:Bob foaf:name "Bobby" :Alice "Alice" "Bob"

S0 S1 S2 D0 D1 D2

Table 8: Example encoding of the triple components from Table 7. Instead of the
reserved bit, IDs prefixed with S belong to the snapshot dictionary and those prefixed

with D belong to the delta dictionary.

86

The additions and deletions of deltas require different metadata in our querying algo-
rithms, which will be explained in Section 3.7. Additions and deletions are respectively
stored in separate stores, which hold all additions and deletions from the complete delta
chain. Each store uses B+Tree data structures, where a key corresponds to a triple and the
value contains version information. The version information consists of a mapping from
version to a local change flag as mentioned in Subsection 3.4.3 and, in case of deletions,
also the relative position of the triple inside the delta. Even though triples can exist in
multiple deltas in the same chain, they will only be stored once. Each addition and dele-
tion store uses three trees with a different triple component order (SPO, POS and OSP),
as discussed in Subsection 3.4.2.
The relative position (defined in Equation 13) of each triple inside the delta to the dele-
tion trees speeds up the process of patching a snapshot’s triple pattern subset for any giv-
en offset. In fact, seven relative positions are stored for each deleted triple: one for each
possible triple pattern (SP?, S?O, S??, ?PO, ?P?, ??O, ???), except for SPO since this
position will always be 0 as each triple is stored only once. This position information
serves two purposes: 1) it allows the querying algorithm to exploit offset capabilities of
the snapshot store to resolve offsets for any triple pattern against any version; and 2) it
allows deletion counts for any triple pattern and version to be determined efficiently. The
use of the relative position and the local change flag during querying will be further ex-
plained in Chapter 4.

Fig. 18: Overview of the components for storing a delta chain. The value structure for
the addition and deletion trees are indicated with the dashed nodes.

relative_position(t, D, p) = count{t' | t' ∈ D ∧ p(t') ∧
t' < t}

Equation 13: Relative position of a triple (t) inside a delta (D) for a triple pattern (p).
(1)

87

Table 9 represent the addition and deletion tree contents when the triples from the exam-
ple in Table 7 are stored. The local change flag is enabled for D0 S1 D1 in the deletions
tree for version 2, as it was previously added in version 1. The relative positions in the
deletion tree for S0 S1 S2 is not the same for versions 2 and 3, because in version 2,
the triple D0 S1 D1 also exists as a deletion, and when sorted, this comes before S0
S1 S2 for triple patterns ?P? and ???.

3.5.4. Addition Counts
As mentioned before in Subsection 3.4.4, in order to make the counting of matching ad-
dition triples for any triple pattern for any version more efficient, we propose to store an
additional mapping from triple pattern and version to the number of matching additions.
Furthermore, for being able to retrieve the total number of additions across all versions,
we also propose to store this value for all triple patterns. This mapping must be calculat-
ed during ingestion time, so that counts during lookup time for any triple pattern at any
version can be derived in constant time. For many triples and versions, the number of
possible triple patterns can become very large, which can result in a large mapping store.
To cope with this, we propose to only store the elements where their counts are larger
than a certain threshold. Elements that are not stored will have to be counted during
lookup time. This is however not a problem for reasonably low thresholds, because the
iteration scope in our indexes can be limited efficiently, as mentioned in
Subsection 3.4.4. The count threshold introduces a trade-off between the storage require-
ments and the required triple counting during lookups.

+ V L

D0 S1 D1 1 F

 3 F

S0 S1 D2 2 F

- V L SP? S?O S?? ?PO ?P? ??O ???

D0 S1 D1 2 T 0 0 0 0 0 0 0

S0 S1 S2 2 F 0 0 0 0 1 0 1

 3 F 0 0 0 0 0 0 0

Table 9: Addition and deletion tree contents based on the example from Table 7 using
the dictionary encoding from Table 8. Column + and - respectively represent the keys
of the addition and deletion trees, which contains triples based on the encoded triple

components. The remaining columns represent the values, i.e., a mapping from version
(V) to the local change flag (L). For the deletion trees, values also include the relative

positions for all essential triple patterns.

88

3.5.5. Deletion Counts
As mentioned in Subsection 3.5.3, each deletion is annotated with its relative position in
all deletions for that version. This position is exploited to perform deletion counting for
any triple pattern and version. We look up the largest possible triple (sorted alphabetical-
ly) for the given triple pattern in the deletions tree, which can be done in logarithmic time
by navigating in the tree to the largest possible match for the given triple pattern. If this
does not result in a match for the triple pattern, no matches exist for the given triple pat-
tern, and the count is zero. Otherwise, we take one plus the relative position of the
matched deletion for the given triple pattern. Because we have queried the largest possi-
ble triple for that triple pattern in the given version, this will be the last deletion in the
list, so this position corresponds to the total number of deletions in that case.
For example, when we want to determine the deletion count for ? foaf:name ? (en-
coded: ? S1 ?) in version 2 using the deletion tree contents from Table 9, we will find
S0 S1 S2 as largest triple in version 2. This triple has relative position 1 for ?P?, so
the total deletion count is 2 for this pattern. This is correct, as we have indeed two triples
matching this pattern, namely D0 S1 D1 and S0 S1 S2.

3.5.6. Metadata
Querying algorithms have to be able to detect the total number of versions across all delta
chains. Therefore, we must store metadata regarding the delta chain version ranges. As-
suming that version identifiers are numerical, a mapping can be maintained from version
ID to delta chain. Additionally, a counter of the total number of versions must be main-
tained for when the last version must be identified.

3.6. Changeset Ingestion Algorithms
In this section, we discuss two ingestion algorithms: a memory-intensive batch algorithm
and a memory-efficient streaming algorithm. These algorithms both take a changeset—
containing additions and deletions—as input, and append it as a new version to the store.
Note that the ingested changesets are regular changesets: they are relative to one another
according to Fig. 15. Furthermore, we assume that the ingested changesets are valid
changesets: they don’t contain impossible triple sequences such as a triple that is re-
moved in two versions without having an addition in between. During ingestion, they
will be transformed to the alternative delta chain structure as shown in Fig. 16. Within the
scope of this article, we only discuss ingestion of deltas in a single delta chain following
a snapshot.
Next to ingesting the added and removed triples, an ingestion algorithm for our storage
approach must be able to calculate the appropriate metadata for the store as discussed in
Subsection 3.5.3. More specifically, an ingestion algorithm has the following
requirements:

addition triples must be stored in all addition trees;
additions and deletions must be annotated with their version;

89

additions and deletions must be annotated with being a local change or not;
deletions must be annotated with their relative position for all triple patterns.

3.6.1. Batch Ingestion
Our first algorithm to ingest data into the store naively loads everything in memory, and
inserts the data accordingly. The advantage of this algorithm is its simplicity and the pos-
sibility to do straightforward optimizations during ingestion. The main disadvantage is
the high memory consumption requirement for large versions.
Before we discuss the actual batch ingestion algorithm, we first introduce an in-memory
changeset merging algorithm, which is required for the batch ingestion. Algorithm 2 con-
tains the pseudocode of this algorithm. First, all contents of the original changeset are
copied into the new changeset (line 3). After that, we iterate over all triples of the second
changeset (line 4). If the changeset already contained the given triple (line 5), the local
change flag is negated. Otherwise, the triple is added to the new changeset, and the local
change flag is set to false (line 9,10). Finally, in both cases the addition flag of the
triple in the new changeset is copied from the second changeset (line 12).

Because our querying algorithms require the relative position of each deletion within a
changeset to be stored, we have to calculate these positions during ingestion. We do this
using the helper function calculatePositions(triple). This function depends
on external mappings that persist over the duration of the ingestion phase that map from
a triple to a counter for each possible triple pattern. When this helper function is called
for a certain triple, we increment the counters for the seven possible triple patterns of the
triple. For the triple itself, we do not maintain a counter, as its value is always 1. Finally,
the function returns a mapping for the current counter values of the seven triple patterns.

1 mergeChangesets(changesetOriginal, changesetIngest) {
2 changesetNew = new Changeset()
3 changesetNew.addAll(changesetOriginal)
4 for (triple : changesetIngest.getTriples()) {
5 if (changesetOriginal.contains(triple)) {
6 localChange = !changesetOriginal.isLocalChange(triple)
7 changesetNew.setLocalChange(triple, localChange)
8 } else {
9 changesetNew.add(triple)
10 changesetNew.setLocalChange(triple, false)
11 }
12 changesetNew.setAddition(triple,
13 changesetIngest.isAddition(triple))
14 }
15 return changesetNew
16 }

Algorithm 2: In-memory changeset merging algorithm

90

The batch ingestion algorithm starts by reading a complete changeset stream in-memory,
sorting it in SPO order, and encoding all triple components using the dictionary. After
that, it loads the changeset from the previous version in memory, which is required for
merging it together with the new changeset using the algorithm from Algorithm 2. After
that, we have the new changeset loaded in memory. Now, we load each added triple into
the addition trees, together with their version and local change flag. After that, we load
each deleted triple into the deletion trees with their version, local change flag and relative
positions. These positions are calculated using calculatePositions(triple).
For the sake of completeness, we included the batch algorithm in pseudo-code in Ap-
pendix D (https:/ / rdfostrich.github.io/ article- jws2018- ostrich/ #appendix- algorithms).
Even though this algorithm is straightforward, it can require a large amount of memory
for large changesets and long delta chains. The theoretical time complexity of this algo-
rithm is O(P + N log(N)) (O(P + N) if the new changeset is already sorted), with
P the number of triples in the previous changeset, and N the number of triples in the new
changeset.

3.6.2. Streaming Ingestion
Because of the unbounded memory requirements of the batch ingestion algorithm, we
introduce a more complex streaming ingestion algorithm. Just like the batch algorithm, it
takes a changeset stream as input, with the additional requirement that the stream’s val-
ues must be sorted in SPO-order. This way the algorithm can assume a consistent order
and act as a sort-merge join operation. Just as for the batch algorithm, we included this
algorithm in pseudo-code in Appendix D (https:/ / rdfostrich.github.io/ article- jws2018-
ostrich/ #appendix- algorithms).
In summary, the algorithm performs a sort-merge join over three streams in SPO-order:
1) the stream of input changeset elements that are encoded using the dictionary when
each element is read, 2) the existing deletions over all versions and 3) the existing addi-
tions over all versions. The algorithm iterates over all streams together, until all of them
are finished. The smallest triple (string-based) over all stream heads is handled in each
iteration, and can be categorized in seven different cases where these stream heads are
indicated by input, deletion and addition, respectively:

1. Deletion is strictly smaller than both input and addition.
The current deletion is the smallest element. The unchanged deletion information
can be copied to the new version. New relative positions must be calculated in this
and all other cases where deletions are added.
2. Addition is strictly smaller than both input and deletion.
Similar to the previous case, the current addition is now the smallest element, and its
information can be copied to the new version.
3. Input is strictly smaller than both addition and deletion.
A triple is added or removed that was not present before, so it can respectively be
added as a non-local change addition or a non-local change deletion.

91

4. Input and deletion are equal, but strictly smaller than addition.
In this case, the new triple already existed in the previous version as a deletion. If
the new triple is an addition, it must be added as a local change.
5. Input and addition are equal, but strictly smaller than deletion.
Similar as in the previous case, the new triple now already existed as an addition. So
the triple must be deleted as a local change if the new triple is a deletion.
6. Addition and deletion are equal, but strictly smaller than input.
The triple existed as both an addition and deletion at some point. In this case, we
copy over the one that existed at the latest version, as it will still apply in the new
version.
7. Addition, deletion, and input are equal.
Finally, the triple already existed as both an addition and deletion, and is equal to
our new triple. This means that if the triple was an addition in the previous version,
it becomes a deletion, and the other way around, and the local change flag can be
inherited.

The theoretical memory requirement for this algorithm is much lower than the batch vari-
ant. That is because it only has to load at least three triples, i.e., the heads of each stream,
in memory, instead of the complete new changeset. Furthermore, we still need to main-
tain the relative position counters for the deletions in all triple patterns. While these coun-
ters could also become large, a smart implementation could perform memory-mapping to
avoid storing everything in memory. The lower memory requirements come at the cost of
a higher logical complexity, but an equal time complexity (assuming sorted changesets).

3.7. Versioned Query Algorithms
In this section, we introduce algorithms for performing VM, DM and VQ triple pattern
queries based on the storage structure introduced in Section 3.5. Each of these querying
algorithms are based on result streams, enabling efficient offsets and limits, by exploiting
the index structure from Section 3.5. Furthermore, we provide algorithms to provide
count estimates for each query.

3.7.1. Version Materialization
Version Materialization (VM) is the most straightforward versioned query type, it allows
you to query against a certain dataset version. In the following, we start by introducing
our VM querying algorithm, after we give a simple example of this algorithm. After that,
we prove the correctness of our VM algorithm and introduce a corresponding algorithm
to provide count estimation for VM query results.

3.7.1.1. Query
Algorithm 3 introduces an algorithm for VM triple pattern queries based on our storage
structure. It starts by determining the snapshot on which the given version is based (line
2). After that, this snapshot is queried for the given triple pattern and offset. If the given

92

version is equal to the snapshot version, the snapshot iterator can be returned directly
(line 3). In all other cases, this snapshot offset could only be an estimation, and the actual
snapshot offset can be larger if deletions were introduced before the actual offset.
Our algorithm returns a stream where triples originating from the snapshot always come
before the triples that were added in later additions. Because of that, the mechanism for
determining the correct offset in the snapshot, additions and deletions streams can be
split up into two cases. The given offset lies within the range of either snapshot minus
deletion triples or within the range of addition triples. At this point, the additions and
deletions streams are initialized to the start position for the given triple pattern and
version.

In the first case, when the offset lies within the snapshot and deletions range (line 11), we
enter a loop that converges to the actual snapshot offset based on the deletions for the
given triple pattern in the given version. This loop starts by determining the triple at the
current offset position in the snapshot (line 13, 14). We then query the deletions tree for
the given triple pattern and version (line 15), filter out local changes, and use the snap-
shot triple as offset. This triple-based offset is done by navigating through the tree to the

Algorithm 3: Version Materialization algorithm for triple patterns that produces a
triple stream with an offset in a given version.

1 queryVm(store, tp, version, originalOffset) {
2 snapshot = store.getSnapshot(version).query(tp, originalOffset
3 if (snapshot.getVersion() = version) {
4 return snapshot
5 }
6
7 additions = store.getAdditionsStream(tp, version)
8 deletions = store.getDeletionStream(tp, version)
9 offset = 0
10
11 if (originalOffset < snapshot.count(tp) - deletions.count(tp))
12 do {
13 snapshot.offset(originalOffset + offset)
14 offsetTriple = snapshot.peek()
15 deletions = store.getDeletionsStream(tp, version,
16 offsetTriple)
17 offset = deletions.getOffset(tp)
18 } while (snapshot.getCurrentOffset() != originalOffset+offse
19 }
20 else {
21 snapshot.offset(snapshot.count(tp))
22 additions.offset(originalOffset - snapshot.count(tp)
23 + deletions.count(tp))
24 }
25
26 return PatchedSnapshotIterator(snapshot, deletions, additions)
27 }

93

smallest triple before or equal to the offset triple. We store an additional offset value (line
16), which corresponds to the current numerical offset inside the deletions stream. As
long as the current snapshot offset is different from the sum of the original offset and the
additional offset, we continue iterating this loop (line 17), which will continuously in-
crease this additional offset value.
In the second case (line 19), the given offset lies within the additions range. Now, we ter-
minate the snapshot stream by offsetting it after its last element (line 20), and we rela-
tively offset the additions stream (line 21). This offset is calculated as the original offset
subtracted with the number of snapshot triples incremented with the number of deletions.
Finally, we return a simple iterator starting from the three streams (line 25). This iterator
performs a sort-merge join operation that removes each triple from the snapshot that also
appears in the deletion stream, which can be done efficiently because of the consistent
SPO-ordering. Once the snapshot and deletion streams have finished, the iterator will
start emitting addition triples at the end of the stream. For all streams, local changes are
filtered out because locally changed triples are cancelled out for the given version as ex-
plained in Subsection 3.4.3, so they should not be returned in materialized versions.

3.7.1.2. Example
We can use the deletion’s position in the delta as offset in the snapshot because this posi-
tion represents the number of deletions that came before that triple inside the snapshot
given a consistent triple order. Table 10 shows simplified storage contents where triples
are represented as a single letter, and there is only a single snapshot and delta. In the fol-
lowing paragraphs, we explain the offset convergence loop of the algorithm in function
of this data for different offsets, when querying all triples in version 1.

Offset 0
For offset zero, the snapshot is first queried for this offset, which results in a stream start-
ing from A. Next, the deletions are queried with offset A, which results in no match, so
the final snapshot stream starts from A.
Offset 1
For an offset of one, the snapshot stream initially starts from B. After that, the deletions
stream is offset to B, which results in a match. The original offset (1), is increased with
the position of B (0) and the constant 1, which results in a new snapshot offset of 2. We
now apply this new snapshot offset. As the snapshot offset has changed, we enter a sec-

Snapshot A B C D E F

Deletions B D E

Positions 0 1 2

Table 10: Simplified storage contents example where triples are represented as a
single letter. The snapshot contains six elements, and the next version contains three

deletions. Each deletion is annotated with its position.

94

ond iteration of the loop. Now, the head of the snapshot stream is C. We offset the dele-
tions stream to the first element on or before C, which again results in B. As this offset
results in the same snapshot offset, we stop iterating and use the snapshot stream with
offset 2 starting from C.
Offset 2
For offset 2, the snapshot stream initially starts from C. After querying the deletions
stream, we find B, with position 0. We update the snapshot offset to 2 + 0 + 1 = 3, which
results in the snapshot stream with head D. Querying the deletions stream results in D
with position 1. We now update the snapshot offset to 2 + 1 + 1 = 4, resulting in a stream
with head E. We query the deletions again, resulting in E with position 2. Finally, we up-
date the snapshot offset to 2 + 2 + 1 = 5 with stream head F. Querying the deletions re-
sults in the same E element, so we use this last offset in our final snapshot stream.

3.7.1.3. Estimated count
In order to provide an estimated count for VM triple pattern queries, we introduce a
straightforward algorithm that depends on the efficiency of the snapshot to provide count
estimations for a given triple pattern. Based on the snapshot count for a given triple pat-
tern, the number of deletions for that version and triple pattern are subtracted and the
number of additions are added. These last two can be resolved efficiently, as we precalcu-
late and store expensive addition and deletion counts as explained in Subsection 3.5.4
and Subsection 3.5.5.

3.7.1.4. Correctness
In this section, we provide a proof that Algorithm 3 results in the correct stream offset for
any given version and triple pattern. We do this by first introducing a set of notations,
followed by several lemmas and corollaries, which lead up to our final theorem proof.
Notations:
We will make use of bracket notation to indicate lists (ordered sets):

A[i] is the element at position i from the list A.
A + B is the concatenation of list A followed by list B.

Furthermore, we will use the following definitions:
snapshot(tp, version) is the ordered list of triples matching the given triple
pattern tp in the corresponding snapshot, from here on shortened to snapshot, as
used on line 2.
additions(version) and deletions(version) are the corresponding
ordered additions and deletions for the given version, from here on shortened to
additions and deletions, as used on lines 7 and 8.
originalOffset is how much the versioned list should be shifted, from here on
shortened to ori.

95

PatchedSnapshotIterator(snapshot, deletions, additions)
is a function that returns the list snapshot\deletions + additions, as
used on line 26.

The following definitions correspond to elements from the loop on lines 12-18:
deletions(x) is the ordered list {d | d ∈ deletions, d ≥ x}, with x
a triple corresponding to the function call on lines 15 and 16.
offset(x) = |deletions| - |deletions(x)|, with x a triple, as used
on line 17.
t(i) is the triple generated at line 13-14 for iteration i.
off(i) is the offset generated at line 17 for iteration i.

Lemma 1: off(n) ≥ off(n-1)
Proof:
We prove this by induction over the iterations of the loop. For n=1 this follows from line
9 and ∀ x offset(x) ≥ 0.
For n+1 we assume that off(n) ≥ off(n-1). Since snapshot is ordered,
snapshot[ori + off(n)] ≥ snapshot[ori + off(n-1)]. From lines 13-
14 it follows that t(n) = snapshot[ori + off(n-1)], together this gives
t(n+1) ≥ t(n).
From this, we get:

{d | d ∈ deletions, d ≥ t(n+1)} ⊆ {d | d ∈ deletions, d
≥ t(n)}
deletions(t(n+1)) ⊆ deletions(t(n))
|deletions(t(n+1))| ≤ |deletions(t(n))|
|deletions| - |deletions(t(n+1))| ≥ |deletions| -
|deletions(t(n))|
offset(t(n+1)) ≥ offset(t(n))

Together with lines 15-17 this gives us off(n+1) ≥ off(n).
Corollary 1: The loop on lines 12-18 always terminates.
Proof:
Following the definitions, the end condition of the loop is ori + off(n) = ori +
off(n+1). From Lemma 1 we know that off is a non-decreasing function. Since
deletions is a finite list of triples, there is an upper limit for off (|deletions|),
causing off to stop increasing at some point which triggers the end condition.
Corollary 2: When the loop on lines 12-18 terminates, offset = |{d | d ∈
deletions, d ≤ snapshot[ori + offset]}| and ori + offset <
|snapshot|

96

Proof:
The first part follows from the definition of deletions and offset. The second part
follows from offset ≤ |deletions| and line 11.
Theorem 1: queryVm returns a sublist of (snapshot\deletions +
additions), starting at the given offset.
Proof:
If the given version is equal to a snapshot, there are no additions or deletions so this fol-
lows directly from lines 2-4.
Following the definition of deletions, ∀ x ∈ deletions: x ∈ snapshot
and thus |snapshot\deletions| = |snapshot| - |deletions|.
Due to the ordered nature of snapshot and deletions, if ori <
|snapshot\deletions|, version[ori] = snapshot[ori + |D|] with D =
{d | d ∈ deletions, d < snapshot[ori + |D|]}. Due to
|snapshot\deletions| = |snapshot| - |deletions|, this corresponds
to the if-statement on line 11. From Corollary 1 we know that the loop terminates and
from Corollary 2 and line 13 that snapshot points to the element at position ori + |{d
| d ∈ deletions, d ≤ snapshot[ori + offset]}| which, together with
additions starting at index 0 and line 26, returns the requested result.
If ori ≥ |snapshot\deletions|, version[ori] =
additions[ori - |snapshot\deletions|]. From lines 21-23 it follows that
snapshot gets emptied and additions gets shifted for the remaining required ele-
ments (ori - |snapshot\deletions|), which then also returns the requested
result on line 26.

3.7.2. Delta Materialization
The goal of delta materialization (DM) queries is to query the triple differences between
two versions. Furthermore, each triple in the result stream is annotated with either being
an addition or deletion between the given version range. Within the scope of this work,
we limit ourselves to delta materialization within a single snapshot and delta chain. Be-
cause of this, we distinguish between two different cases for our DM algorithm in which
we can query triple patterns between a start and end version, the start version of the query
can either correspond to the snapshot version or it can come after that. Furthermore, we
introduce an equivalent algorithm for estimating the number of results for these queries.

3.7.2.1. Query
For the first query case, where the start version corresponds to the snapshot version, the
algorithm is straightforward. Since we always store our deltas relative to the snapshot,
filtering the delta of the given end version based on the given triple pattern directly corre-
sponds to the desired result stream. Furthermore, we filter out local changes, as we are
only interested in actual change with respect to the snapshot.

97

For the second case, the start version does not correspond to the snapshot version. The
algorithm iterates over the triple pattern iteration scope of the addition and deletion trees
in a sort-merge join-like operation, and only emits the triples that have a different addi-
tion/deletion flag for the two versions.
In both cases, result stream offsetting happens naively by manually iterating over the
stream for a given number of times to reach the given offset.

3.7.2.2. Estimated count
For the first case, the start version corresponds to the snapshot version. The estimated
number of results is then the number of snapshot triples for the pattern summed up with
the exact umber of deletions and additions for the pattern.
In the second case the start version does not correspond to the snapshot version. We esti-
mate the total count as the sum of the additions and deletions for the given triple pattern
in both versions. This may only be a rough estimate, but will always be an upper bound,
as the triples that were changed twice within the version range and negate each other are
also counted. For exact counting, this number of negated triples should be subtracted.

3.7.3. Version Query
For version querying (VQ), the final query atom, we have to retrieve all triples across all
versions, annotated with the versions in which they exist. In this work, we again focus on
version queries for a single snapshot and delta chain. For multiple snapshots and delta
chains, the following algorithms can simply be applied once for each snapshot and delta
chain. In the following sections, we introduce an algorithm for performing triple pattern
version queries and an algorithm for estimating the total number of matching triples for
the former queries.

3.7.3.1. Query
Our version querying algorithm is again based on a sort-merge join-like operation. We
start by iterating over the snapshot for the given triple pattern. Each snapshot triple is
queried within the deletion tree. If such a deletion value can be found, the versions anno-
tation contains all versions except for the versions for which the given triple was deleted
with respect to the given snapshot. If no such deletion value was found, the triple was
never deleted, so the versions annotation simply contains all versions of the store. Result
stream offsetting can happen efficiently as long as the snapshot allows efficient offsets.
When the snapshot iterator is finished, we iterate over the addition tree in a similar way.
Each addition triple is again queried within the deletions tree and the versions annotation
can equivalently be derived.

3.7.3.2. Estimated count
Calculating the number of unique triples matching any triple pattern version query is triv-
ial. We simply retrieve the count for the given triple pattern in the given snapshot and add
the number of additions for the given triple pattern over all versions. The number of dele-

98

tions should not be taken into account here, as this information is only required for deter-
mining the version annotation in the version query results.

3.8. Evaluation
In this section, we evaluate our proposed storage technique and querying algorithms. We
start by introducing OSTRICH, an implementation of our proposed solution. After that,
we describe the setup of our experiments, followed by presenting our results. Finally, we
discuss these results.

3.8.1. Implementation
OSTRICH stands for Offset-enabled STore for TRIple CHangesets, and it is a software
implementation of the storage and querying techniques described in this article It is im-
plemented in C/C++ and available on GitHub (https:/ / zenodo.org/ record/ 883008) under
an open license. In the scope of this work, OSTRICH currently supports a single snap-
shot and delta chain. OSTRICH uses HDT [55] as snapshot technology as it conforms to
all the requirements for our approach. Furthermore, for our indexes we use Kyoto Cabi-
net (http:/ / fallabs.com/ kyotocabinet/), which provides a highly efficient memory-mapped
B+Tree implementation with compression support. OSTRICH immediately generates the
main SPO index and the auxiliary OSP and POS indexes. In future work, OSTRICH
could be modified to only generate the main index and delay auxiliary index generation
to a later stage. Memory-mapping is required so that not all data must be loaded in-mem-
ory when queries are evaluated, which would not always be possible for large datasets.
For our delta dictionary, we extend HDT’s dictionary implementation with adjustments to
make it work with unsorted triple components. We compress this delta dictionary with
gzip, which requires decompression during querying and ingestion. Finally, for storing
our addition counts, we use the memory-mapped Hash Database of Kyoto Cabinet.
We provide a developer-friendly C/C++ API for ingesting and querying data based on an
OSTRICH store. Additionally, we provide command-line tools for ingesting data into an
OSTRICH store, or evaluating VM, DM or VQ triple pattern queries for any given limit
and offset against a store. Furthermore, we implemented Node JavaScript bindings
(https:/ / zenodo.org/ record/ 883010) that expose the OSTRICH API for ingesting and
querying to JavaScript applications. We used these bindings to expose an OSTRICH
store (http:/ / versioned.linkeddatafragments.org/ bear) containing a dataset with 30M
triples in 10 versions using TPF [36], with the VTPF feature [42].

3.8.2. Experimental Setup
As mentioned before in Subsection 3.2.3, we evaluate our approach using the BEAR
benchmark. We chose this benchmark because it provides a complete set of tools and
data for benchmarking RDF versioning systems, containing datasets, queries and easy-to-
use engines to compare with.

99

We extended the existing BEAR implementation for the evaluation of offsets. We did this
by implementing custom offset features into each of the BEAR approaches. Only for VM
queries in HDT-IC an efficient implementation (HDT-IC+) could be made because of
HDT’s native offset capabilities. In all other cases, naive offsets had to be implemented
by iterating over the result stream until a number of elements equal to the desired offset
were consumed. This modified implementation is available on GitHub (https:/ / github.-
com/ rdfostrich/ bear/ tree/ ostrich- eval- journal). To test the scalability of our approach for
datasets with few and large versions, we use the BEAR-A benchmark. We use the first
ten versions of the BEAR-A dataset, which contains 30M to 66M triples per version.
This dataset was compiled from the Dynamic Linked Data Observatory. To test for
datasets with many smaller versions, we use BEAR-B with the daily and hourly granular-
ities. The daily dataset contains 89 versions and the hourly dataset contains 1,299 ver-
sions, both of them have around 48K triples per version. We did not evaluate BEAR-B-
instant, because OSTRICH requires increasingly more time for each new version inges-
tion, as will be shown in the next section. As BEAR-B-hourly with 1,299 versions al-
ready takes more than three days to ingest, the 21,046 versions from BEAR-B-instant
would require too much time to ingest. All of our experiments were executed on a 64-bit
Ubuntu 14.04 machine with 128 GB of memory and a 24-core 2.40 GHz CPU.
For BEAR-A, we use all 7 of the provided querysets, each containing at most 50 triple
pattern queries, once with a high result cardinality and once with a low result cardinality.
These querysets correspond to all possible triple pattern materializations, except for triple
patterns where each component is blank. For BEAR-B, only two querysets are provided,
those that correspond to ?P? and ?PO queries. The number of BEAR-B queries is more
limited, but they are derived from real-world DBpedia queries which makes them useful
for testing real-world applicability. All of these queries are evaluated as VM queries on
all versions, as DM between the first version and all other versions, and as VQ.
For a complete comparison with other approaches, we re-evaluated BEAR’s Jena and
HDT-based RDF archive implementations. More specifically, we ran all BEAR-A queries
against Jena with the IC, CB, TB and hybrid CB/TB implementation, and HDT with the
IC and CB implementations using the BEAR-A dataset for ten versions. We did the same
for BEAR-B with the daily and hourly dataset. After that, we evaluated OSTRICH for the
same queries and datasets. We were not able to extend this benchmark with other similar
systems such as X-RDF-3X, RDF-TX and Dydra, because the source code of systems
was either not publicly available, or the system would require additional implementation
work to support the required query interfaces.
Additionally, we evaluated the ingestion rates and storage sizes for all approaches. Fur-
thermore, we compared the ingestion rate for the two different ingestion algorithms of
OSTRICH. The batch-based algorithm expectedly ran out of memory for larger amounts
of versions, so we used the streaming-based algorithm for all further evaluations.
Finally, we evaluated the offset capabilities of OSTRICH by comparing it with custom
offset implementations for the other approaches. We evaluated the blank triple pattern
query with offsets ranging from 2 to 4,096 with a limit of 10 results.

100

3.8.3. Results
In this section, we present the results of our evaluation. We report the ingestion results,
compressibility, query evaluation times for all cases and offset result. All raw results and
the scripts that were used to process them are available on GitHub (https:/ / github.com/
rdfostrich/ ostrich- bear- results/).

3.8.3.1. Ingestion
Table 11 and Table 12 respectively show the storage requirements and ingestion times for
the different approaches for the three different benchmarks. For BEAR-A, the HDT-
based approaches outperform OSTRICH in terms of ingestion time, they are about two
orders of magniture faster. Only HDT-CB requires slightly less storage space. The Jena-
based approaches ingest one order of magnitude faster than OSTRICH, but require more
storage space. For BEAR-B-daily, OSTRICH requires less storage space than all other
approaches except for HDT-CB at the cost of slower ingestion. For BEAR-B-hourly, only
HDT-CB and Jena-CB/TB require about 8 to 4 times less space than OSTRICH. For
BEAR-B-daily and BEAR-B-hourly, OSTRICH even requires less storage space than
gzip on raw N-Triples.
As mentioned in Subsection 3.5.4, we use a threshold to define which addition count val-
ues should be stored, and which ones should be evaluated at query time. For our experi-
ments, we fixed this count threshold at 200, which has been empirically determined
through various experiments as a good value. For values higher than 200, the addition
counts started having a noticable impact on the performance of count estimation. This
threshold value means that when a triple pattern has 200 matching additions, then this
count will be stored. Table 13 shows that the storage space of the addition count datas-
tructure in the case of BEAR-A and BEAR-B-hourly is insignificant compared to the to-
tal space requirements. However, for BEAR-B-daily, addition counts take up 37.05% of
the total size with still an acceptable absolute size, as the addition and deletion trees re-
quire relatively less space, because of the lower amount of versions. Within the scope of
this work, we use this fixed threshold of 200. We consider investigating the impact of dif-
ferent threshold levels and methods for dynamically determining optimal levels future
work.
Fig. 19 shows an increasing ingestion rate for each consecutive version for BEAR-A,
while Fig. 20 shows corresponding increasing storage sizes. Analogously, Fig. 21 shows
the ingestion rate for BEAR-B-hourly, which increases until around version 1100, after
which it increases significantly. Fig. 22 shows faster increasing storage sizes.
Fig. 23 compares the BEAR-A ingestion rate of the streaming and batch algorithms. The
streaming algorithm starts of slower than the batch algorithm but grows linearly, while
the batch algorithm consumes a large amount of memory, resulting in slower ingestion
after version 8 and an out-of-memory error after version 10.

101

Approach BEAR-A BEAR-B-daily BEAR-B-hourly

Raw (N-Triples) 46,069.76 556.44 8,314.86

Raw (gzip) 3,194.88 30.98 466.35

OSTRICH 3,102.72 12.32 187.46

 +1,484.80 +4.55 +263.13

Jena-IC 32,808.96 415.32 6,233.92

Jena-CB 18,216.96 42.82 473.41

Jena-TB 82,278.4 23.61 3,678.89

Jena-CB/TB 31,160.32 22.83 53.84

HDT-IC 5,335.04 142.08 2,127.57

 +1,494.69 +6.53 +98.88

HDT-CB 2,682.88 5.96 24.39

 +802.55 +0.25 +0.75

Table 11: Storage sizes for each of the RDF archive approaches in MB with BEAR-A,
BEAR-B-daily and BEAR-B-hourly. The additional storage size for the auxiliary
OSTRICH and HDT indexes are provided as separate rows. The lowest sizes per

dataset are indicated in italics.

Approach BEAR-A BEAR-B-daily BEAR-B-hourly

OSTRICH 2,256 12.36 4,497.32

Jena-IC 443 8.91 142.26

Jena-CB 226 9.53 173.48

Jena-TB 1,746 0.35 70.56

Jena-CB/TB 679 0.35 0.65

HDT-IC 34 0.39 5.89

HDT-CB 18 0.02 0.07

Table 12: Ingestion times (minutes) for each of the RDF archive approaches with
BEAR-A, BEAR-B-daily and BEAR-B-hourly. The lowest times per dataset are

indicated in italics.

102

BEAR-A BEAR-B-daily BEAR-B-hourly

13.69 (0.29%) 6.25 (37.05%) 15.62 (3.46%)

Table 13: Storage sizes of the OSTRICH addition count component in MB with
BEAR-A, BEAR-B-daily and BEAR-B-hourly. The percentage of storage space that

this component requires compared to the complete store is indicated between brackets.

Fig. 19: OSTRICH ingestion durations for each consecutive BEAR-A version in
minutes for an increasing number of versions, showing a lineair growth.

Fig. 20: Cumulative OSTRICH store sizes for each consecutive BEAR-A version in
GB for an increasing number of versions, showing a lineair growth.

Fig. 21: OSTRICH ingestion durations for each consecutive BEAR-B-hourly version
in minutes for an increasing number of versions.

103

Fig. 22: Cumulative OSTRICH store sizes for each consecutive BEAR-B-hourly
version in GB for an increasing number of versions.

Format Dataset Size gzip Savings

N-Triples A 46,069.76 3,194.88 93.07%

 B-hourly 8,314.86 466.35 94.39%

 B-daily 556.44 30.98 94.43%

OSTRICH A 3,117.64 2,155.13 95.32%

 B-hourly 187.46 34.92 99.58%

 B-daily 12.32 3.35 99.39%

HDT-IC A 5,335.04 1,854.48 95.97%

 B-hourly 2,127.57 388.02 95.33%

 B-daily 142.08 25.69 95.33%

HDT-CB A 2,682.88 856.39 98.14%

 B-hourly 24.39 2.86 99.96%

 B-daily 5.96 1.14 99.79%

Table 14: Compressability using gzip for all BEAR datasets using OSTRICH, HDT-
IC, HDT-CB and natively as N-Triples. The columns represent the original size (MB),

the resulting size after applying gzip (MB), and the total space savings. The lowest
sizes are indicated in italics.

104

3.8.3.2. Compressibility
Table 14 presents the compressibility of datasets without auxiliary indexes, showing that
OSTRICH and the HDT-based approaches significantly improve compressibility com-
pared to the original N-Triples serialization. We omitted the results from the Jena-based
approaches in this table, as all compressed sizes were in all cases two to three times larg-
er than the N-Triples compression.

3.8.3.3. Query Evaluation
Figures 24, 25 and 26 respectively summarize the VM, DM and VQ query durations of
all BEAR-A queries on the first ten versions of the BEAR-A dataset for the different ap-
proaches. HDT-IC clearly outperforms all other approaches in all cases, while the Jena-
based approaches are orders of magnitude slower than the HDT-based approaches and
OSTRICH in all cases. OSTRICH is about two times faster than HDT-CB for VM
queries, and slightly slower for both DM and VQ queries. For DM queries, HDT-CB
does however continuously become slower for larger versions, while the lookup times for
OSTRICH remain constant. From version 7, OSTRICH is faster than HDT-CB. Ap-
pendix A (https:/ / rdfostrich.github.io/ article- jws2018- ostrich/ #appendix- bear- a) contains
more detailed plots for each BEAR-A queryset, in which we can see that all approaches
collectively become slower for queries with a higher result cardinality, and that predicate-
queries are also significantly slower for all approaches.

Fig. 23: Comparison of the OSTRICH stream and batch-based ingestion durations.

105

Fig. 24: Median BEAR-A VM query results for all triple patterns for the first 10
versions.

Fig. 25: Median BEAR-A DM query results for all triple patterns from version 0 to all
other versions.

106

Figures 27, 28 and 29 contain the query duration results for the BEAR-B queries on the
complete BEAR-B-daily dataset for the different approaches. Jena-based approaches are
again slower than both the HDT-based ones and OSTRICH. For VM queries, OSTRICH
is slower than HDT-IC, but faster than HDT-CB, which becomes slower for larger ver-
sions. For DM queries, OSTRICH is faster than HDT-CB for the second half of the ver-
sions, and slightly faster HDT-IC. The difference between HDT-IC and OSTRICH is
however insignificant in this case, as can be seen in Appendix B (https:/ / rdfos-
trich.github.io/ article- jws2018- ostrich/ #appendix- bear- b- daily). For VQ queries, OS-
TRICH is significantly faster than all other approaches. Appendix B (https:/ / rdfos-
trich.github.io/ article- jws2018- ostrich/ #appendix- bear- b- daily) contains more detailed
plots for this case, in which we can see that predicate-queries are again consistently slow-
er for all approaches.

Fig. 26: Median BEAR-A VQ query results for all triple patterns.

Fig. 27: Median BEAR-B-daily VM query results for all triple patterns for the first 10
versions.

107

Figures 30, 31 and 32 show the query duration results for the BEAR-B queries on the
complete BEAR-B-hourly dataset for all approaches. OSTRICH again outperforms Jena-
based approaches in all cases. HDT-IC is faster for VM queries than OSTRICH, but
HDT-CB is significantly slower, except for the first 100 versions. For DM queries, OS-
TRICH is comparable to HDT-IC, and faster than HDT-CB, except for the first 100 ver-
sions. Finally, OSTRICH outperforms all HDT-based approaches for VQ queries by al-
most an order of magnitude. Appendix C (https:/ / rdfostrich.github.io/ article- jws2018-
ostrich/ #appendix- bear- b- hourly) contains the more detailed plots with the same conclu-
sion as before that predicate-queries are slower.

Fig. 28: Median BEAR-B-daily DM query results for all triple patterns from version 0
to all other versions.

Fig. 29: Median BEAR-B-daily VQ query results for all triple patterns.

108

Fig. 30: Median BEAR-B-hourly VM query results for all triple patterns for the first
10 versions.

Fig. 31: Median BEAR-B-hourly DM query results for all triple patterns from version
0 to all other versions.

109

3.8.3.4. Offset
From our evaluation of offsets, Fig. 33 shows that OSTRICH offset evaluation remain
below 1ms, while other approaches grow beyond that for larger offsets, except for HDT-
IC+. HDT-CB, Jena-CB and Jena-CB/TB are not included in this and the following fig-
ures because they require full materialization before offsets can be applied, which is ex-
pensive and therefore take a very long time to evaluate. For DM queries, all approaches
have growing evaluation times for larger offsets including OSTRICH, as can be seen in
Fig. 34. Finally, OSTRICH has VQ evaluation times that are approximately independent
of the offset value, while other approaches again have growing evaluation times, as
shown in Fig. 35.

Fig. 32: Median BEAR-B-hourly VQ query results for all triple patterns.

Fig. 33: Median VM query results for different offsets over all versions in the BEAR-
A dataset.

110

3.8.4. Discussion
In this section, we interpret and discuss the results from previous section. We discuss the
ingestion, compressibility, query evaluation, offset efficiency and test our hypotheses.

3.8.4.1. Ingestion
For all evaluated cases, OSTRICH requires less storage space than most non-CB ap-
proaches. The CB and CB/TB approaches in most cases outperform OSTRICH in terms
of storage space efficiency due to the additional metadata that OSTRICH stores per
triple. Because of this, most other approaches require less time to ingest new data. These
timing results should however be interpreted correctly, because all other approaches re-

Fig. 34: Median DM query results for different offsets between version 0 and all other
versions in the BEAR-A dataset.

Fig. 35: Median VQ query results for different offsets in the BEAR-A dataset.

111

ceive their input data in the appropriate format (IC, CB, TB, CB/TB), while OSTRICH
does not. OSTRICH must convert CB input at runtime to the alternative CB structure
where deltas are relative to the snapshot, which explains the larger ingestion times. As an
example, Fig. 36 shows the number of triples in each BEAR-B-hourly version where the
deltas have been transformed to the alternative delta structure that OSTRICH uses. Just
like the first part of Fig. 21, this graph also increases linearly, which indicates that the
large number of triples that need to be handled for long delta chains is one of the main
bottlenecks for OSTRICH. This is also the reason why OSTRICH has memory issues
during ingestion at the end of such chains. One future optimization could be to maintain
the last version of each chain in a separate index for faster patching. Or a new ingestion
algorithm could be implemented that accepts input in the correct alternative CB format.
Alternatively, a new snapshot can dynamically be created when ingestion time becomes
too large, which could for example for BEAR-B-hourly take place around version 1000.

The BEAR-A and BEAR-B-hourly datasets indicate the limitations of the ingestion algo-
rithm in our system. The results for BEAR-A show that OSTRICH ingests slowly for
many very large versions, but it is still possible because of the memory-efficient stream-
ing algorithm. The results for BEAR-B-hourly show that OSTRICH should not be used
when the number of versions is very large. Furthermore, for each additional version in a
dataset, the ingestion time increases. This is a direct consequence of our alternative delta
chain method where all deltas are relative to a snapshot. That is the reason why when
new deltas are inserted, the previous one must be fully materialized by iterating over all
existing triples, because no version index exists.
In Fig. 21, we can observe large fluctuations in ingestion time around version 1,200 of
BEAR-B-hourly. This is caused by the large amount of versions that are stored for each
tree value. Since each version requires a mapping to seven triple pattern indexes and one
local change flag in the deletion tree, value sizes become non-negligible for large
amounts of versions. Each version value requires 28 uncompressed bytes, which results
in more than 32KB for a triple in 1,200 versions. At that point, the values start to form a
bottleneck as only 1,024 elements can be loaded in-memory using the default page cache

Fig. 36: Total number of triples for each BEAR-B-hourly version when converted to
the alternative CB structure used by OSTRICH, i.e., each triple is an addition or

deletion relative to the first version instead of the previous version.

112

size of 32MB, which causes a large amount of swapping. This could be solved by either
tweaking the B+Tree parameters for this large amount of versions, reducing storage re-
quirements for each value, or by dynamically creating a new snapshot.
We compared the streaming and batch-based ingestion algorithm in Fig. 23. The batch
algorithm is initially faster because most operations can happen in memory, while the
streaming algorithm only uses a small fraction of that memory, which makes the latter
usable for very large datasets that don’t fit in memory. In future work, a hybrid between
the current streaming and batch algorithm could be investigated, i.e., a streaming algo-
rithm with a larger buffer size, which is faster, but doesn’t require unbounded amounts of
memory.

3.8.4.2. Compressibility
As shown in Table 14, when applying gzip directly on the raw N-Triples input, this al-
ready achieves significant space savings. However, OSTRICH, HDT-IC and HDT-CB are
able to reduce the required storage space even further when they are used as a prepro-
cessing step before applying gzip. This shows that these approaches are better—storage-
wise—for the archival of versioned datasets. This table also shows that OSTRICH
datasets with more versions are more prone to space savings using compression tech-
niques like gzip compared to OSTRICH datasets with fewer versions.

3.8.4.3. Query Evaluation
The results from previous section show that the OSTRICH query evaluation efficiency is
faster than all Jena-based approaches, mostly faster than HDT-CB, and mostly slower
than HDT-IC. VM queries in OSTRICH are always slower than HDT-IC, because HDT
can very efficiently query a single materialized snapshot in this case, while OSTRICH
requires more operations for materializing. VM queries in OSTRICH are however always
faster than HDT-CB, because the latter has to reconstruct complete delta chains, while
OSTRICH only has to reconstruct a single delta relative to the snapshot. For DM queries,
OSTRICH is slower or comparable to HDT-IC, slower than HDT-CB for early versions,
but faster for later versions. This slowing down of HDT-CB for DM queries is again
caused by reconstruction of delta chains. For VQ queries, OSTRICH outperforms all oth-
er approaches for datasets with larger amounts of versions. For BEAR-A, which contains
only 10 versions in our case, the HDT-based approaches are slightly faster because only a
small amount of versions need to be iterated.

3.8.4.4. Offsets
One of our initial requirements was to design a system that allows efficient offsetting of
VM, DM and VQ result streams. As shown in last section, for both VM and VQ queries,
the lookup times for various offsets remain approximately constant. For VM queries, this
can fluctuate slightly for certain offsets due to the loop section inside the VM algorithm
for determining the starting position inside the snapshot and deletion tree. For DM
queries, we do however observe an increase in lookup times for larger offsets. That is be-

113

cause the current DM algorithm naively offsets these streams by iterating over the stream
until a number of elements equal to the desired offset have been consumed. Furthermore,
other IC and TB approaches outperform OSTRICH’s DM result stream offsetting. This
introduces a new point of improvement for future work, seeing whether or not OSTRICH
would allow more efficient DM offsets by adjusting either the algorithm or storage for-
mat.

3.8.4.5. Hypotheses
In Section 3.3, we introduced six hypotheses, which we will validate in this section based
on our experimental results. We will only consider the comparison between OSTRICH
and HDT-based approaches, as OSTRICH outperforms the Jena-based approaches for all
cases in terms of lookup times. These validations were done using R, for which the
source code can be found on GitHub (https:/ / github.com/ rdfostrich/ ostrich- bear- results/).
Tables containing p-values of the results can be found in Appendix E (https:/ / rdfos-
trich.github.io/ article- jws2018- ostrich/ #appendix- tests).
For our first hypothesis, we expect OSTRICH lookup times to remain independent of
version for VM and DM queries. We validate this hypothesis by building a linear regres-
sion model with as response the lookup time, and as factors version and number of re-
sults. The appendix (E) (https:/ / rdfostrich.github.io/ article- jws2018- ostrich/ #hypo- test- 1)
contains the influence of each factor, which shows that for all cases, we can accept the
null hypothesis that the version factor has no influence on the models with a confidence
of 99%. Based on these results, we accept our first hypothesis.
Hypothesis 2 states that OSTRICH requires less storage space than IC-based approaches,
and Hypothesis 3 correspondingly states that query evaluation is slower for VM and
faster or equal for DM and VQ. Results from previous section showed that for BEAR-A,
BEAR-B-daily and BEAR-B-hourly, OSTRICH requires less space than HDT-IC, which
means that we accept Hypothesis 2. In order to validate that query evaluation is slower
for VM but faster or equal for DM and VQ, we compared the means using the indepen-
dent two-group t-test, for which the results can be found in the appendix (E) (https:/ / rd-
fostrich.github.io/ article- jws2018- ostrich/ #hypo- test- 2). Normality of the groups was de-
termined using the Kolmogorov-Smirnov test, for which p-values of 0.00293 or less were
found. In all cases, the means are not equal with a confidence of 95%. For BEAR-B-daily
and BEAR-B-hourly, HDT-IC is faster for VM queries, but slower for DM and VQ
queries. For BEAR-A, HDT-IC is faster for all query types. We therefore reject Hypothe-
sis 3, as it does not apply for BEAR-A, but it is valid for BEAR-B-daily and BEAR-B-
hourly. This means that OSTRICH typically requires less storage space than IC-based ap-
proaches, and outperforms other approaches in terms of querying efficiency unless the
number of versions is small or for VM queries.
In Hypothesis 4, we stated that OSTRICH requires more storage space than CB-based
approaches, and in Hypothesis 5 that query evaluation is faster or equal. In all cases OS-
TRICH requires more storage space than HDT-CB, which is why we accept Hypothesis
4. For the query evaluation, we again compare the means in the appendix (E) (https:/ / rd-
fostrich.github.io/ article- jws2018- ostrich/ #hypo- test- 3) using the same test. In BEAR-A,

114

VQ queries in OSTRICH are not faster for BEAR-A, and VM queries in OSTRICH are
not faster for BEAR-B-daily, which is why we reject Hypothesis 5. However, only one in
three query atoms are not fulfilled, and OSTRICH is faster than HDT-CB for BEAR-B-
hourly. In general, OSTRICH requires more storage space than CB-based approaches,
and query evaluation is faster unless the number of versions is low.
Finally, in our last hypothesis, we state that average query evaluation times are lower
than other non-IC approaches at the cost of increased ingestion times. In all cases, the in-
gestion time for OSTRICH is higher than the other approaches, and as shown in the ap-
pendix (E) (https:/ / rdfostrich.github.io/ article- jws2018- ostrich/ #hypo- test- 3), query eval-
uation times for non-IC approaches are lower for BEAR-B-hourly. This means that we
reject Hypothesis 6 because it only holds for BEAR-B-hourly and not for BEAR-A and
BEAR-B-daily. In general, OSTRICH ingestion is slower than other approaches, but im-
proves query evaluation time compared to other non-IC approaches, unless the number of
versions is low.
In this section, we accepted three of the six hypotheses. As these are statistical hypothe-
ses, these do not necessarily indicate negative results of our approach. Instead, they allow
us to provide general guidelines on where our approach can be used effectively, and
where not.

3.9. Conclusions
In this article, we introduced an RDF archive storage method with accompanied algo-
rithms for evaluating VM, DM, and VQ queries, with efficient result offsets. Our novel
storage technique is a hybrid of the IC/CB/TB approaches, because we store sequences of
snapshots followed by delta chains. The evaluation of our OSTRICH implementation
shows that this technique offers a new trade-off in terms of ingestion time, storage size
and lookup times. By preprocessing and storing additional data during ingestion, we can
reduce lookup times for VM, DM and VQ queries compared to CB and TB approaches.
Our approach requires less storage space than IC approaches, at the cost of slightly slow-
er VM queries, but comparable DM queries. Furthermore, our technique is faster than CB
approaches, at the cost of more storage space. Additionally, VQ queries become increas-
ingly more efficient for datasets with larger amounts of versions compared to IC, CB and
TB approaches. Our current implementation supports a single snapshot and delta chain as
a proof of concept, but production environments would normally incorporate more fre-
quent snapshots, balancing between storage and querying requirements.
With lookup times of 1ms or less in most cases, OSTRICH is an ideal candidate for Web
querying, as the network latency will typically be higher than that. At the cost of in-
creased ingestion times, lookups are fast. Furthermore, by reusing the highly efficient
HDT format for snapshots, existing HDT files can directly be loaded by OSTRICH and
patched with additional versions afterwards.
OSTRICH fulfills the requirements [82] for a backend RDF archive storage solution for
supporting versioning queries in the TPF framework. Together with the VTPF [42] inter-
face feature, RDF archives can be queried on the Web at a low cost, as demonstrated on
our public VTPF entrypoint (http:/ / versioned.linkeddatafragments.org/ bear). TPF only

115

requires triple pattern indexes with count metadata, which means that TPF clients are
able to evaluate full VM SPARQL queries using OSTRICH and VTPF. In future work,
the TPF client will be extended to also support DM and VQ SPARQL queries.
With OSTRICH, we provide a technique for publishing and querying RDF archives at
Web-scale. Several opportunities exist for advancing this technique in future work, such
as improving the ingestion efficiency, increasing the DM offset efficiency, and supporting
dynamic snapshot creation. Solutions could be based on existing cost models [83] for de-
termining whether a new snapshot or delta should be created based on quantified time
and space parameters. Furthermore, branching and merging of different version chains
can be investigated.
Our approach succeeds in reducing the cost for publishing RDF archives on the Web.
This lowers the barrier towards intelligent clients in the Semantic Web [1] that require
evolving data, with the goal of time-sensitive querying over the ever-evolving Web of
data.

Acknowledgements
We would like to thank Christophe Billiet for providing his insights into temporal data-
bases. We thank Giorgos Flouris for his comments on the structure and contents of this
article, and Javier D. Fernández for his help in setting up and running the BEAR bench-
mark. The described research activities were funded by Ghent University, imec, Flanders
Innovation & Entrepreneurship (AIO), and the European Union. Ruben Verborgh is a
postdoctoral fellow of the Research Foundation – Flanders.

116

Chapter 4.
Querying a heterogeneous Web
In this chapter, we focus on the third challenge of this PhD: “The Web is highly heteroge-
neous”. In order to query over such a highly heterogeneous Web, a query engine is need-
ed that is able to handle various kinds of interfaces on the Web. Furthermore, in order to
handle these different kinds of interfaces efficiently, various kinds of interface-specific
algorithms must be supported. For example, if an interface exposes a triple pattern index,
then the query should be able to detect and exploit this index to improve the efficiency
when evaluating triple pattern queries.
The different kinds of Web interfaces, and the large number of different querying algo-
rithms that can be used with them requires an intelligent query engine that detect these
interfaces and apply these algorithms. Our work in this chapter handles this problem by
introducing a highly flexible and modular query engine platform Comunica. Comunica
has been designed in such a way that support for new interfaces and query algorithms can
be developed independently as separate modules, and these modules can then be plugged
into Comunica when they are needed. This engine simplifies the research and develop-
ment of new query interfaces and algorithms, as new techniques can be tested immediate-
ly in conjunction with other already existing interfaces and algorithms.
This chapter introduces a system architecture. Unlike previous chapters were the goal
was to research new methods, the goal of this chapter is to introduce a new architecture.
While this work required research to determine a suitable architecture, no novel methods
were introduced. As such, no research question was applicable here.

117

Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande, and Ruben Verborgh.
2018. Comunica: a Modular SPARQL Query Engine for the Web. In Denny Vran-
dečić et al., eds. Proceedings of the 17th International Semantic Web Conference. Lecture
Notes in Computer Science. Springer, 239–255.

Abstract
Query evaluation over Linked Data sources has become a complex story,
given the multitude of algorithms and techniques for single- and multi-
source querying, as well as the heterogeneity of Web interfaces through
which data is published online. Today’s query processors are insufficiently
adaptable to test multiple query engine aspects in combination, such as
evaluating the performance of a certain join algorithm over a federation of
heterogeneous interfaces. The Semantic Web research community is in
need of a flexible query engine that allows plugging in new components
such as different algorithms, new or experimental SPARQL features, and
support for new Web interfaces. We designed and developed a Web-
friendly and modular meta query engine called Comunica that meets these
specifications. In this article, we introduce this query engine and explain
the architectural choices behind its design. We show how its modular na-
ture makes it an ideal research platform for investigating new kinds of
Linked Data interfaces and querying algorithms. Comunica facilitates the
development, testing, and evaluation of new query processing capabilities,
both in isolation and in combination with others.

4.1. Introduction
Linked Data on the Web exists in many shapes and forms—and so do the processors we
use to query data from one or multiple sources. For instance, engines that query RDF
data using the SPARQL language [4] employ different algorithms [84, 85] and support
different language extensions [86, 87]. Furthermore, Linked Data is increasingly pub-
lished through different Web interfaces, such as data dumps, Linked Data documents [5],
SPARQL endpoints [88] and Triple Pattern Fragments (TPF) interfaces [36]. This has led
to entirely different query evaluation strategies, such as server-side [88], link-traversal-
based [89], shared client–server query processing [36], and client-side (by downloading
data dumps and loading them locally).
The resulting variety of implementations suffers from two main problems: a lack of sus-
tainability and a lack of comparability. Alternative query algorithms and features are typ-
ically either implemented as forks of existing software packages [90, 91, 92] or as inde-
pendent engines [93]. This practice has limited sustainability: forks are often not merged
into the main software distribution and hence become abandoned; independent imple-
mentations require a considerable upfront cost and also risk abandonment more than es-
tablished engines. Comparability is also limited: forks based on older versions of an en-

118

gine cannot meaningfully be evaluated against newer forks, and evaluating combinations
of cross-implementation features—such as different algorithms on different interfaces—
is not possible without code adaptation. As a result, many interesting comparisons are
never performed because they are too costly to implement and maintain. For example, it
is currently unknown how the Linked Data Eddies algorithm [93] performs over a federa-
tion [36] of brTPF interfaces [94]. Another example is that the effects of various opti-
mizations and extensions for TPF interfaces [90, 91, 92, 93, 94, 42, 95, 96] have only
been evaluated in isolation, whereas certain combinations will likely prove
complementary.
In order to handle the increasing heterogeneity of Linked Data on the Web, as well as
various solutions for querying it, there is a need for a flexible and modular query engine
to experiment with all of these techniques—both separately and in combination. In this
article, we introduce Comunica to realize this vision. It is a highly modular meta engine
for federated SPARQL query evaluation over heterogeneous interfaces, including TPF
interfaces, SPARQL endpoints, and data dumps. Comunica aims to serve as a flexible re-
search platform for designing, implementing, and evaluating new and existing Linked
Data querying and publication techniques.
Comunica differs from existing query processors on different levels:

1. The modularity of the Comunica meta query engine allows for extensions and
customization of algorithms and functionality. Users can build and fine-tune a con-
crete engine by wiring the required modules through an RDF configuration docu-
ment. By publishing this document, experiments can be repeated and adapted by
others.
2. Within Comunica, multiple heterogeneous interfaces are first-class citizens. This
enables federated querying over heterogeneous sources and makes it for example
possible to evaluate queries over any combination of SPARQL endpoints, TPF inter-
faces, datadumps, or other types of interfaces.
3. Comunica is implemented using Web-based technologies in JavaScript, which
enables usage through browsers, the command line, the SPARQL protocol [88], or
any Web or JavaScript application.

Comunica and its default modules are publicly available on GitHub and the npm package
manager under the open-source MIT license (canonical citation: https:/ /
zenodo.org/record/1202509#.Wq9GZhNuaHo).
This article is structured as follows. In the next section, we discuss the related work, fol-
lowed by the main features of Comunica in Section 4.3. After that, we introduce the ar-
chitecture of Comunica in Section 4.4, and its implementation in Section 4.5. Next, we
compare the performance of different Comunica configurations with the TPF Client in
Section 4.6. Finally, Section 4.7 concludes and discusses future work.

119

4.2. Related Work
In this section, we illustrate the many possible degrees of freedom for SPARQL query
evaluation, and show that they are hard to combine, which is the problem we aim to solve
with Comunica. We first discuss the SPARQL query language, its engines, and algo-
rithms. After that, we discuss alternative Linked Data publishing interfaces, and their
connection to querying. Finally, we discuss the software design patterns that are essential
in the architecture of Comunica.

4.2.1. The Different Facets of SPARQL
SPARQL [4] is the W3C-recommended RDF query language. The traditional way to im-
plement a SPARQL query processor is to use it as an interface to an underlying database,
resulting in a so-called SPARQL endpoint [88]. This is similar to how an SQL interface
provides access to a relation database. The internal storage can either be a native RDF
store, e.g., AllegroGraph [97] and Blazegraph [77], or a non-RDF store, e.g.,
Virtuoso [45] uses an object-relational database management system.
Various algorithms have been proposed for optimized SPARQL query evaluation. Some
algorithms for example use the concept of query rewriting [84] based on algebraic equiv-
alent query operations. Others have proposed the optimization of Basic Graph Pattern
evaluation [85] using selectivity estimation of triple patterns.
In order to evaluate SPARQL queries over datasets of different storage types, SPARQL
query frameworks were developed, such as Jena (ARQ) [80], RDFLib [98], rdflib.js [99]
and rdfstore-js [100]. Jena is a Java framework, RDFLib is a python package, and rd-
flib.js and rdfstore-js are JavaScript modules. Jena—or more specifically the ARQ API—
and RDFLib are fully SPARQL 1.1 [4] compliant. rdflib.js and rdfstore-js both support a
subset of SPARQL 1.1. These SPARQL engines support in-memory models or other
sources, such as Jena TDB in the case of ARQ. Most of the query algorithms are tightly
coupled to these frameworks, which makes swapping out query algorithms for specific
query operators hard or sometimes even impossible. Furthermore, complex things such
as federated querying over heterogeneous interfaces are difficult to implement using
these frameworks, as they are not supported out-of-the-box. This issue of modularity and
heterogeneity are two of the main problems we aim to solve within Comunica. The dif-
ferences between Comunica and existing frameworks will be explained in more detail in
Section 4.3.
The Triple Pattern Fragments client [36] (also known as Client.js or ldf-client) is a
client-side SPARQL engine that retrieves data over HTTP through Triple Pattern Frag-
ments (TPF) interfaces [36]. Different algorithms [90, 95, 96] for this client and TPF in-
terface extensions [91, 92, 94, 42] have been proposed to reduce effort of the server or
client in some way. All of these efforts are however implemented and evaluated in isola-
tion. Furthermore, the implementations are tied to the TPF interface, which makes it im-
possible to use them for other types of datasources and interfaces. With Comunica, we

120

aim to solve this by modularizing query operation implementations into separate mod-
ules, so that they can be plugged in and combined in different ways, on top of different
datasources and interfaces.
With Semantic Web technologies providing the capability to integrate data from different
sources, federated query processing has been an active area of research. However, most
of the existing frameworks require SPARQL endpoints on every source. The TPF Client
instead federates over TPF interfaces, and achieves similar performance compared to the
state of the art [36] despite its usage of a more lightweight interface. However, no frame-
works exist that enable federation over heterogeneous interfaces, such as the federation
over any combination of SPARQL endpoints and TPF interfaces. With Comunica, we
aim to fill this gap. In addition dataset-centric approaches, alternative methods such as
link-traversal-based query evaluation [89] exist to query a web of Linked Data
documents.

4.2.2. Linked Data Fragments
In order to formally capture the heterogeneity of different Web interfaces to publish RDF
data, the Linked Data Fragment [36] (LDF) conceptual framework uniformly character-
izes responses of Web interfaces to RDF-based knowledge graphs. The simplest type of
LDF is a data dump—it is the response of a single HTTP requests for a complete RDF
dataset. Other types of LDFs includes responses of SPARQL endpoints, TPF interfaces,
and Linked Data documents.
Existing LDF research highlights that, when it comes to publishing datasets on the Web,
there is no silver bullet: no single interface works well in all situations, as each one in-
volves trade-offs [36]. As such, data publishers must choose the type of interface that
matches their intended use case, target audience and infrastructure. This however compli-
cates client-side engines that need to retrieve data from the resulting heterogeneity of in-
terfaces. As shown by the TPF approach, interfaces can be self-descriptive and expose
one or more features [101], to describe their functionality using a common
vocabulary [102, 103]. This allows clients without prior knowledge of the exact inputs
and outputs of an interface to discover its usage at runtime.
A design goal of Comunica is to facilitate interaction with any current and future inter-
face within the LDF framework, both in single-source and federated scenarios.

4.2.3. Software Design Patterns
In the following, we discuss three software design patterns that are relevant to the modu-
lar design of the Comunica engine.

4.2.3.1. Publish–subscribe pattern
The publish-subscribe [104] design pattern involves passing messages between publish-
ers and subscribers. Instead of programming publishers to send messages directly to sub-
scribers, they are programmed to publish messages to certain categories. Subscribers can
subscribe to these categories which will cause them to receive these published messages,

121

SPARQL query evaluation

Modularity

Heterogeneous interfaces

Federation

without requiring prior knowledge of the publishers. This pattern is useful for decoupling
software components from each other, and only requiring prior knowledge of message
categories. We use this pattern in Comunica for allowing different implementations of
certain tasks to subscribe to task-specific buses.

4.2.3.2. Actor Model
The actor model [105] was designed as a way to achieve highly parallel systems consist-
ing of many independent agents communicating using messages, similar to the publish–
subscribe pattern. An actor is a computational unit that performs a specific task, acts on
messages, and can send messages to other actors. The main advantages of the actor mod-
el are that actors can be independently made to implement certain specific tasks based on
messages, and that these can be handled asynchronously. These characteristics are highly
beneficial to the modularity that we want to achieve with Comunica. That is why we use
this pattern in combination with the publish–subscribe pattern to let each implementation
of a certain task correspond to a separate actor.

4.2.3.3. Mediator pattern
The mediator [106] pattern is able to reduce coupling between software components that
interact with each other, and to easily change the interaction if needed. This can be
achieved by encapsulating the interaction between software components in a mediator
component. Instead of the components having to interact with each other directly, they
now interact through the mediator. These components therefore do not require prior
knowledge of each other, and different implementations of these mediators can lead to
different interaction results. In Comunica, we use this pattern to handle actions when
multiple actors are able to solve the same task, by for example choosing the best actor for
a task, or by combining the solutions of all actors.

4.3. Requirement analysis
In this section, we discuss the main requirements and features of the Comunica frame-
work as a research platform for SPARQL query evaluation. Furthermore, we discuss each
feature based on the availability in related work. The main feature requirements of Co-
munica are the following:

The engine should be able to interpret, process and output
results for SPARQL queries.

Different independent modules should contain the implementation of spe-
cific tasks, and they should be combinable in a flexible framework. The configurations
should be describable in RDF.

Different types of datasource interfaces should be supported,
and it should be possible to add new types independently.

The engine should support federated querying over different interfaces.
122

Web-based The engine should run in Web browsers using native Web technologies.

In Table 15, we summarize the availability of these features in similar works.

4.3.1. SPARQL query evaluation
The recommended way of querying within RDF data, is using the SPARQL query lan-
guage. All of the discussed frameworks support at least the parsing and execution of
SPARQL queries, and reporting of results.

4.3.2. Modularity
Adding new functionality or changing certain operations in Comunica should require
minimal to no changes to existing code. Furthermore, the Comunica environment should
be developer-friendly, including well documented APIs and auto-generation of stub code.
In order to take full advantage of the Linked Data stack, modules in Comunica must be
describable, configurable and wireable in RDF. By registering or excluding modules
from a configuration file, the user is free to choose how heavy or lightweight the query
engine will be. Comunica’s modular architecture will be explained in Section 4.4. ARQ,
RDFLib, rdflib.js and rdfstore-js only support customization by implementing a custom
query engine programmatically to handle operators. They do not allow plugging in or out
certain modules.

4.3.3. Heterogeneous interfaces
Due to the existence of different types of Linked Data Fragments for exposing Linked
Datasets, Comunica should support heterogeneous interfaces types, including self-de-
scriptive Linked Data interfaces such as TPF. This TPF interface is the only interface that

Feature TPF
Client

ARQ RDFLib rdflib.js rdfstore-
js

Comunica

SPARQL X(1) X X X(1) X(1) X(1)

Modularity X

Heterogeneous
interfaces

 X(2,3) X(2,3) X(3) X(3) X

Federation X X(4) X(4) X

Web-based X X X X

Table 15: Comparison of the availability of the main features of Comunica in similar
works. (1) A subset of SPARQL 1.1 is implemented. (2) Querying over SPARQL

endpoints, other types require implementing an internal storage interface. (3)
Downloading of dumps. (4) Federation only over SPARQL endpoints using the

SERVICE keyword.

123

is supported by the TPF Client. Additionally, Comunica should also enable querying over
other sources, such as SPARQL endpoints and data dumps in RDF serializations. The ex-
isting SPARQL frameworks mostly support querying against SPARQL endpoints, local
graphs, and specific storage types using an internal storage adapter.

4.3.4. Federation
Next to the different type of Linked Data Fragments for exposing Linked Datasets, data
on the Web is typically spread over different datasets, at different locations. As mentioned
in Section 4.2, federated query processing is a way to query over the combination of such
datasets, without having to download the complete datasets and querying over them lo-
cally. The TPF client supports federated query evaluation over its single supported inter-
face type, i.e., TPF interfaces. ARQ and RDFLib only support federation over SPARQL
endpoints using the SERVICE keyword. Comunica should enable combined federated
querying over its supported heterogeneous interfaces.

4.3.5. Web-based
Comunica must be built using native Web technologies, such as JavaScript and RDF con-
figuration documents. This allows Comunica to run in different kinds of environments,
including Web browsers, local (JavaScript) runtime engines and command-line inter-
faces, just like the TPF-client, rdflib.js and rdfstore-js. ARQ and RDFLib are able to run
in their language’s runtime and via a command-line interface, but not from within Web
browsers. ARQ would be able to run in browsers using a custom Java applet, which is not
a native Web technology.

4.4. Architecture
In this section, we discuss the design and architecture of the Comunica meta engine, and
show how it conforms to the modularity feature requirement. In summary, Comunica is
collection of small modules that, when wired together, are able to perform a certain task,
such as evaluating SPARQL queries. We first discuss the customizability of Comunica at
design-time, followed by the flexibility of Comunica at run-time. Finally, we give an
overview of all modules.

4.4.1. Customizable Wiring at Design-time through Dependency Injection
There is no such thing as the Comunica engine. Instead, Comunica is a meta engine that
can be instantiated into different engines based on different configurations. Comunica
achieves this customizability at design-time using the concept of dependency
injection [107]. Using a configuration file, which is created before an engine is started,
components for an engine can be selected, configured and combined. For this, we use the
Components.js [108] JavaScript dependency injection framework. This framework is
based on semantic module descriptions and configuration files using the Object-Oriented
Components ontology [109].

124

4.4.1.1. Description of Individual Software Components
In order to refer to Comunica components from within configuration files, we semanti-
cally describe all Comunica components using the Components.js framework in JSON-
LD [110]. Listing 3 shows an example of the semantic description of an RDF parser.

4.4.1.2. Description of Complex Software Configurations
A specific instance of a Comunica engine can be initialized using Components.js config-
uration files that describe the wiring between components. For example, Listing 4 shows
a configuration file of an engine that is able to parse N3 and JSON-LD-based documents.
This example shows that, due to its high degree of modularity, Comunica can be used for
other purposes than a query engine, such as building a custom RDF parser.
Since many different configurations can be created, it is important to know which one
was used for a specific use case or evaluation. For that purpose, the RDF documents that
are used to instantiate a Comunica engine can be published as Linked Data [109]. They
can then serve as provenance and as the basis for derived set-ups or evaluations.

{
 "@context": [...],
 "@id": "npmd:@comunica/actor-rdf-parse-n3",
 "components": [
 {
 "@id": "crpn3:Actor/RdfParse/N3",
 "@type": "Class",
 "extends": "cbrp:Actor/RdfParse",
 "requireElement": "ActorRdfParseN3",
 "comment": "An actor that parses Turtle-like RDF",
 "parameters": [
 {
 "@id": "caam:Actor/AbstractMediaTypedFixed/mediaType",
 "default": ["text/turtle", "application/n-triples"]
 }
]
 }
]
}

Listing 3: Semantic description of a component that is able to parse N3-based RDF
serializations. This component has a single parameter that allows media types to be

registered that this parser is able to handle. In this case, the component has four default
media types.

125

4.4.2. Flexibility at Run-time using the Actor–Mediator–Bus Pattern
Once a Comunica engine has been configured and initialized, components can interact
with each other in a flexible way using the actor [105], mediator [106], and publish–sub-
scribe [104] patterns. Any number of actor, mediator and bus modules can be created,
where each actor interacts with mediators, that in turn invoke other actors that are regis-
tered to a certain bus.
Fig. 37 shows an example logic flow between actors through a mediator and a bus. The
relation between these components, their phases and the chaining of them will be ex-
plained hereafter.

{
 "@context": [...],
 "@id": "http://example.org/myrdfparser",
 "@type": "Runner",
 "actors": [
 { "@type": "ActorInitRdfParse",
 "mediatorRdfParse": {
 "@type": "MediatorRace",
 "cc:Mediator/bus": { "@id": "cbrp:Bus/RdfParse" }
 } },
 { "@type": "ActorRdfParseN3",
 "cc:Actor/bus": "cbrp:Actor/RdfParse" },
 { "@type": "ActorRdfParseJsonLd",
 "cc:Actor/bus": "cbrp:Actor/RdfParse" },
]
}

Listing 4: Comunica configuration of ActorInitRdfParse for parsing an RDF
document in an unknown serialization. This actor is linked to a mediator with a bus

containing two RDF parsers for specific serializations.

Fig. 37: Example logic flow where Actor 0 requires an action to be performed. This is
done by sending the action to the Mediator, which sends a test action to Actors 1, 2

and 3 via the Bus. The Bus then sends all test replies to the Mediator, which chooses
the best actor for the action, in this case Actor 3. Finally, the Mediator sends the

original action to Actor 3, and returns its response to Actor 0.

126

4.4.2.1. Relation between Actors and Buses
Actors are the main computational units in Comunica, and buses and mediators form the
glue that ties them together and makes them interactable. Actors are responsible for being
able to accept certain messages via the bus to which they are subscribed, and for respond-
ing with an answer. In order to avoid a single high-traffic bus for all message types which
could cause performance issues, separate buses exist for different message types. Fig. 38
shows an example of how actors can be registered to buses.

4.4.2.2. Mediators handle Actor Run and Test Phases
Each mediator is connected to a single bus, and its goal is to determine and invoke the
best actor for a certain task. The definition of ‘best’ depends on the mediator, and differ-
ent implementations can lead to different choices in different scenarios. A mediator
works in two phases: the test phase and the run phase. The test phase is used to check un-
der which conditions the action can be performed in each actor on the bus. This phase
must always come before the run phase, and is used to select which actor is best suited to
perform a certain task under certain conditions. If such an actor is determined, the run
phase of a single actor is initiated. This run phase takes this same type of message, and
requires to effectively act on this message, and return the result of this action. Fig. 39
shows an example of a mediator invoking a run and test phase.

Fig. 38: An example of two different buses each having two subscribed actors. The left
bus has different actors for parsing triples in a certain RDF serialization to triple

objects. The right bus has actors that join query bindings streams together in a certain
way.

127

4.4.3. Modules
At the time of writing, Comunica consists of 79 different modules. These consist of 13
buses, 3 mediator types, 57 actors and 6 other modules. In this section, we will only dis-
cuss the most important actors and their interactions.
The main bus in Comunica is the query operation bus, which consists of 19 different ac-
tors that provide at least one possible implementation of the typical SPARQL operations
such as quad patterns, basic graph patterns (BGPs), unions, projects, … These actors in-
teract with each other using streams of quad or solution mappings, and act on a query
plan expressed in SPARQL algebra [4].
In order to enable heterogeneous sources to be queried in a federated way, we allow a list
of sources, annotated by type, to be passed when a query is initiated. These sources are
passed down through the chain of query operation actors, until the quad pattern level is
reached. At this level, different actors exist for handling a single source of a certain type,
such as TPF interfaces, SPARQL endpoints, local or remote datadumps. In the case of
multiple sources, one actor exists that implements a federation algorithm defined for
TPF [36], but instead of federating over different TPF interfaces, it federates over differ-
ent single-source quad pattern actors.
At the end of the pipeline, different actors are available for serializing the results of a
query in different ways. For instance, there are actors for serializing the results according
to the SPARQL JSON [111] and XML [112] result specifications, but actors with more

Fig. 39: Example sequence diagram of a mediator that chooses the fastest actor on a
parse bus with two subscribed actors. The first parser is very fast but requires a lot of
memory, while the second parser is slower, but requires less memory. Which one is
best, depends on the use case and is determined by the Mediator. The mediator first

calls the tests of the actors for the given action, and then runs the action using the best
actor.

128

visual and developer-friendly formats are available as well.

4.5. Implementation
Comunica is implemented in TypeScript/JavaScript as a collection of Node modules,
which are able to run in Web browsers using native Web technologies. Comunica is
available under an open license on GitHub (https:/ / zenodo.org/ record/
1202509#.Wq9GZhNuaHo) and on the NPM package manager (https:/ / www.npmjs.com/
org/ comunica). The 79 Comunica modules are tested thoroughly, with more than 1,200
unit tests reaching a test coverage of 100%. In order to be compatible with existing Java-
Script RDF libraries, Comunica follows the JavaScript API specification by the RDFJS
community group (https:/ / www.w3.org/ community/ rdfjs/), and will actively be further
aligned within this community. In order to encourage collaboration within the communi-
ty, we extensively use the GitHub issue tracker (https:/ / github.com/ comunica/ comunica/
issues) for planned features, bugs and other issues. Finally, we publish detailed documen-
tation (https:/ / comunica.readthedocs.io) for the usage and development of Comunica.
We provide a default Linked Data-based configuration file with all available actors for
evaluating federated SPARQL queries over heterogeneous sources. This allows SPARQL
queries to be evaluated using a command-line tool, from a Web service implementing the
SPARQL protocol [88], within a JavaScript application, or within the browser. We fully
implemented SPARQL 1.0 [113] and a subset of SPARQL 1.1 [4] at the time of writing.
In future work, we intend to implement additional actors for supporting SPARQL 1.1
completely.
Comunica currently supports querying over the following types of heterogeneous data-
sources and interfaces:

Triple Pattern Fragments interfaces [36]
Quad Pattern Fragments interfaces (an experimental extension of TPF with a fourth
graph element (https:/ / github.com/ LinkedDataFragments/ Server.js/ tree/ feature- qpf-
latest))
SPARQL endpoints [88]
Local and remote dataset dumps in RDF serializations.
HDT datasets [55]
Versioned OSTRICH datasets [114]

In order to demonstrate Comunica’s ability to evaluate federated query evaluation over
heterogeneous sources, the following guide shows how you can try this out in Comunica
yourself (https:/ / gist.github.com/ rubensworks/ 34bb69fa6c83176bce60a5e8a25051e8).
Support for new algorithms, query operators and interfaces can be implemented in an ex-
ternal module, without having to create a custom fork of the engine. The module can then
be plugged into existing or new engines that are identified by RDF configuration files
(https:/ / github.com/ comunica/ comunica/ blob/ master/ packages/ actor- init- sparql/ config/
config- default.json).

129

In the future, we will also look into adding support for other interfaces such as
brTPF [94] for more efficient join operations and VTPF [42] for queries over versioned
datasets.

4.6. Performance Analysis
One of the goals of Comunica is to replace the TPF Client as a more flexible and modular
alternative, with at least the same functionality and similar performance. The fact that
Comunica supports multiple heterogeneous interfaces and sources as shown in the previ-
ous section validates this flexibility and modularity, as the TPF Client only supports
querying over TPF interfaces.
Next to a functional completeness, it is also desired that Comunica achieves similar per-
formance compared to the TPF Client. The higher modularity of Comunica is however
expected to cause performance overhead, due to the additional bus and mediator commu-
nication, which does not exist in the TPF Client. Hereafter, we compare the performance
of the TPF Client and Comunica and discover that Comunica has similar performance to
the TPF Client. As the main goal of Comunica is modularity, and not absolute perfor-
mance, we do not compare with similar frameworks such as ARQ and RDFLib. Instead,
relative performance of evaluations using the same engine under different configurations
is key for comparisons, which will be demonstrated using Comunica hereafter.
For the setup of this evaluation we used a single machine (Intel Core i5-3230M CPU at
2.60 GHz with 8 GB of RAM), running the Linked Data Fragments server with a HDT-
backend [55] and the TPF Client or Comunica, for which the exact versions and configu-
rations will be linked in the following workflow. The main goal of this evaluation is to
determine the performance impact of Comunica, while keeping all other variables
constant.
In order to illustrate the benefit of modularity within Comunica, we evaluate using two
different configurations of Comunica. The first configuration (Comunica-sort) imple-
ments a BGP algorithm that is similar to that of the original TPF Client: it sorts triple pat-
terns based on their estimated counts and evaluates and joins them in that order. The sec-
ond configuration (Comunica-smallest) implements a simplified version of this BGP al-
gorithm that does not sort all triple patterns in a BGP, but merely picks the triple pattern
with the smallest estimated count to evaluate on each recursive call, leading to slightly
different query plans.
We used the following evaluation workflow:

1. Generate a WatDiv [115] dataset with scale factor=100.
2. Generate the corresponding default WatDiv queries (https:/ / github.com/ comunica/
test- comunica/ tree/ ISWC2018/ sparql/ watdiv- 10M) with query-count=5.
3. Install the server software configuration (https:/ / linkedsoftwaredependencies.org/
raw/ ldf- availability- experiment- config.jsonld), implementing the TPF specification
(https:/ / www.hydra- cg.com/ spec/ latest/ triple- pattern- fragments/), with its dependen-
cies.

130

4. Install the TPF Client software (https:/ / github.com/ LinkedDataFragments/ Clien-
t.js), implementing the SPARQL 1.1 protocol, with its dependencies (https:/ / linked-
softwaredependencies.org/ raw/ ldf- availability- experiment- client.ttl).
5. Execute the generated WatDiv queries 3 times on the TPF Client, after doing a
warmup run, and record the execution times results (https:/ / raw.githubusercontent.-
com/ comunica/ test- comunica/ master/ results/ watdiv- ldf.csv).
6. Install the Comunica software configuration (https:/ / raw.githubusercontent.com/
comunica/ test- comunica/ master/ config/ config- sort.json), implementing the SPAR-
QL 1.1 protocol, with its dependencies (https:/ / raw.githubusercontent.com/ comuni-
ca/ test- comunica/ master/ config/ comunica- npm.ttl), using the Comunica-sort algo-
rithm.
7. Execute the generated WatDiv queries 3 times on the Comunica client, after doing
a warmup run, and record the execution times (https:/ / raw.githubusercontent.com/
comunica/ test- comunica/ master/ results/ watdiv- comunica- sort.csv).
8. Update the Comunica installation to use a new configuration (https:/ /
raw.githubusercontent.com/ comunica/ test- comunica/ master/ config/ config- small-
est.json) supporting the Comunica-smallest algorithm.
9. Execute the generated WatDiv queries 3 times on the Comunica client, after doing
a warmup run, and record the execution times (https:/ / raw.githubusercontent.com/
comunica/ test- comunica/ master/ results/ watdiv- comunica.csv).

The results from Fig. 40 show that Comunica is able to achieve similar performance
compared to the TPF Client. Concretely, both Comunica variants are faster for 11
queries, and slower for 9 queries. However, the difference in evaluation times is in most
cases very small, and are caused by implementation details, as the implemented algo-
rithms are equivalent. Contrary to our expectations, the performance overhead of Comu-
nica’s modularity is negligible. Comunica therefore improves upon the TPF Client in
terms of modularity and functionality, and achieves similar performance.
These results also illustrate the simplicity of comparing different algorithms inside Co-
munica. In this case, we compared an algorithm that is similar to that of the original TPF
Client with a simplified variant. The results show that the performance is very similar,

C1 F1 F2 F3 F4 F5 L1 L2 L3 L4 L5 S1 S2 S3 S4 S5 S6 S7
0

5

10

15

D
ur

at
io
n
(s
ec

)

TPF
Comunica-sort
Comunica-smalles t

C2 C3

0

50

100

150

200

250

D
ur

at
io
n
(s
ec

)

Fig. 40: Average query evaluation times for the TPF Client, Comunica-sort, and
Comunica-smallest for all queries (shorter is better). C2 and C3 are shown separately

because of their higher evaluation times.

131

but the original algorithm (Comunica-sort) is faster in most of the cases. It is however not
always faster, as illustrated by query C1, where Comunica-sort is almost a second slower
than Comunica-smallest. In this case, the heuristic algorithm of the latter was able to
come up with a slightly better query plan. Our goal with this result is to show that Comu-
nica can easily be used to compare such different algorithms, where future work can fo-
cus on smart mediator algorithms to choose the best BGP actor in each case.

4.7. Conclusions
In this work, we introduced Comunica as a highly modular meta engine for federated
SPARQL query evaluation over heterogeneous interfaces. Comunica is thereby the first
system that accomplishes the Linked Data Fragments vision of a client that is able to
query over heterogeneous interfaces. Not only can Comunica be used as a client-side
SPARQL engine, it can also be customized to become a more lightweight engine and per-
form more specific tasks, such as for example only evaluating BGPs over Turtle files,
evaluating the efficiency of different join operators, or even serve as a complete server-
side SPARQL query endpoint that aggregates different datasources. In future work, we
will look into supporting supporting alternative (non-semantic) query languages as well,
such as GraphQL [116].
If you are a Web researcher, then Comunica is the ideal research platform for investigat-
ing new Linked Data publication interfaces, and for experimenting with different query
algorithms. New modules can be implemented independently without having to fork ex-
isting codebases. The modules can be combined with each other using an RDF-based
configuration file that can be instantiated into an actual engine through dependency injec-
tion. However, the target audience is broader than just the research community. As Co-
munica is built on Linked Data and Web technologies, and is extensively documented
and has a ready-to-use API, developers of RDF-consuming (Web) applications can also
make use of the platform. In the future, we will continue maintaining (https:/ / github.com/
comunica/ comunica/ wiki/ Sustainability- Plan) and developing Comunica and intend to
support and collaborate with future researchers on this platform.
The introduction of Comunica will trigger a new generation of Web querying research.
Due to its flexibility and modularity, existing areas can be combined and evaluated in
more detail, and new promising areas that remained covered so far will be exposed.

Acknowledgements
The described research activities were funded by Ghent University, imec, Flanders Inno-
vation & Entrepreneurship (AIO), and the European Union. Ruben Verborgh is a post-
doctoral fellow of the Research Foundation – Flanders.

132

Chapter 5.
Querying Evolving Data
The challenge that is handled in this chapter is: “Publishing evolving data via a queryable
interface is costly.” While the previous chapter focused on querying heterogeneous
sources on the Web containing static knowledge graphs, this chapter focuses on continu-
ous querying on the Web with evolving knowledge graphs. Compared to Chapter 3—in
which we introduced a storage technique for evolving knowledge graphs—this chapter
focuses on the publishing interface on top of that. This publishing interface is required
for exposing evolving knowledge graphs on the Web. As such, the interface introduced in
this work could be implemented based on the storage backend from Chapter 3.
A query interface that accepts continuous queries over evolving knowledge graphs inher-
ently requires more server effort compared to one-time queries over static knowledge
graphs. That is because queries need to be evaluated continuously instead of only once.
As such, when evolving knowledge graphs need to be published on the Web, an interface
is needed that scales well in a public Web environment with a potentially large number of
concurrent clients.
The work in this chapter is based on the research question: “Can clients use volatility
knowledge to perform more efficient continuous SPARQL query evaluation by polling
for data?”. We answer this research question by introducing a query interface that expos-
es evolving knowledge graphs annotated with a description of their volatility. Based on
these descriptions, clients can detect for how long parts of the knowledge graph will re-
main valid, and when new queries need to be initiated to calculate next up-to-date results.
We implemented our approach as a system called TPF Query Streamer. Our evaluations
show that the server load with this approach scales better with an increasing number of
concurrent clients compared other solutions. This shows that our technique is a good can-
didate for publishing evolving knowledge graphs on the Web.
Since this research was performed at the start of my PhD, follow-up work has been done
since then. For this reason, the chapter ends with an addendum that summarizes the rele-
vant follow-up work.

133

Ruben Taelman, Ruben Verborgh, Pieter Colpaert, and Erik Mannens. 2016. Continuous
Client-side Query Evaluation over Dynamic Linked Data. In Harald Sack, Giuseppe
Rizzo, Nadine Steinmetz, Dunja Mladenić, Sören Auer, & Christoph Lange, eds. Pro-
ceedings of the 13th Extended Semantic Web Conference: Satellite events. Lecture Notes
in Computer Science. Springer, 273–289.

Abstract
Existing solutions to query dynamic Linked Data sources extend the
SPARQL language, and require continuous server processing for each
query. Traditional SPARQL endpoints already accept highly expressive
queries, so extending these endpoints for time-sensitive queries increases
the server cost even further. To make continuous querying over dynamic
Linked Data more affordable, we extend the low-cost Triple Pattern Frag-
ments (TPF) interface with support for time-sensitive queries. In this pa-
per, we introduce the TPF Query Streamer that allows clients to evaluate
SPARQL queries with continuously updating results. Our experiments in-
dicate that this extension significantly lowers the server complexity, at the
expense of an increase in the execution time per query. We prove that by
moving the complexity of continuously evaluating queries over dynamic
Linked Data to the clients and thus increasing bandwidth usage, the cost at
the server side is significantly reduced. Our results show that this solution
makes real-time querying more scalable for a large amount of concurrent
clients when compared to the alternatives.

5.1. Introduction
As the Web of Data is a dynamic dataspace, different results may be returned depending
on when a question was asked. The end-user might be interested in seeing the query re-
sults update over time, for instance, by re-executing the entire query over and over again
(“polling”). This is, however, not very practical, especially if it is unknown beforehand
when data will change. An additional problem is that many public (even static) SPARQL
query endpoints suffer from a low availability [117]. The unrestricted complexity of
SPARQL queries [118] combined with the public character of SPARQL endpoints entails
a high server cost, which makes it expensive to host such an interface with high availabil-
ity. Dynamic SPARQL streaming solutions offer combined access to dynamic data
streams and static background data through continuously executing queries. Because of
this continuous querying, the cost for these servers is even higher than with static
querying.
In this work, we therefore devise a solution that enables clients to continuously evaluate
non-high frequency queries by polling specific fragments of the data.
The resulting framework performs this without the server needing to remember any client
state. Its mechanism requires the server to annotate its data so that the client can effi-

134

ciently determine when to retrieve fresh data. The generic approach in this paper is ap-
plied to the use case of public transit route planning. It can be used in various other do-
mains with continuously updating data, such as smart city dashboards, business intelli-
gence, or sensor networks. This paper extends our earlier work [119] with additional
experiments.
In the next section, we discuss related research on which our solution will be based. After
that, Section 5.3 gives a general problem statement. In Section 5.4, we present a motivat-
ing use case. Section 5.5 discusses different techniques to represent dynamic data, after
which Section 5.6 gives an explanation of our proposed query solution. Next, Section 5.7
shows an overview of our experimental setup and its results. Finally, Section 5.8 discuss-
es the conclusions of this work with further research opportunities.

5.2. Related Work
In this section, we first explain techniques to perform RDF annotation, which will be
used to determine freshness. Then, we zoom in on possible representations of temporal
data in RDF. We finish by discussing existing SPARQL streaming extensions and a low-
cost (static) Linked Data publication technique.

5.2.1. RDF Annotations
Annotations allow us to attach metadata to triples. We might for example want to say that
a triple is only valid within a certain time interval, or that a triple is only valid in a certain
geographical area.
RDF 1.0 [120] allows triple annotation through reification. This mechanism uses subject,
predicate, and object as predicates, which allow the addition of annotations to such rei-
fied RDF triples. The downside of this approach is that one triple is now transformed to
three triples, which significantly increases the total amount of triples.
Singleton Properties [121] create unique instances (singletons) of predicates, which then
can be used for further specifying that relationship, for example, by adding annotations.
New instances of predicates are created by relating them to the old predicate through the
sp:singletonPropertyOf predicate. While this approach requires fewer triples
than reification to represent the same information, it still has the issue of the original
triple being lost, because the predicate is changed in this approach.
With RDF 1.1 [3] came graph support, which allows triples to be encapsulated into
named graphs, which can also be annotated. Graph-based annotation requires fewer
triples than both reification and singleton properties when representing the same informa-
tion. It requires the addition of a fourth element to the triple which transforms it to a
quad. This fourth element, the graph, can be used to add the annotations to.

5.2.2. Temporal data in the RDF model
Regular RDF triples cannot express the time and space in which the fact they describe is
true. In domains where data needs to be represented for certain times or time ranges,
these traditional representations should thus be extended. There are two main mecha-

135

nisms for adding time [122]. Versioning will take snapshots of the complete graph every
time a change occurs. Time labeling will annotate triples with their change time. The lat-
ter is believed to be a better approach in the context of RDF, because complete snapshots
introduce overhead, especially if only a small part of the graph changes. Gutierrez et al.
made a distinction between point-based and interval-based labeling, which are inter-
changeable [123]. The former states information about an element at a certain time in-
stant, while the latter states information at all possible times between two time instants.
The same authors introduced a temporal vocabulary [123] for the discussed mechanisms,
which will be referred to as tmp in the remainder of this chapter. Its core predicates are:

tmp:interval: This predicate can be used on a subject to make it valid in a cer-
tain time interval. The range of this property is a time interval, which is represented
by the two mandatory properties tmp:initial and tmp:final.
tmp:instant: Used on subjects to make it valid on a certain time instant as a
point-based time representation. The range of this property is xsd:dateTime.
tmp:initial and tmp:final: The domain of these predicates is a time inter-
val. Their range is a xsd:dateTime, and they respectively indicate the start and
the end of the interval-based time representation.

Next to these properties, we will also introduce our own predicate tmp:expiration
with range xsd:dateTime which indicates that the subject is only valid up until the
given time.

5.2.3. SPARQL Streaming Extensions
Several SPARQL extensions exist that enable querying over data streams. These data
streams are traditionally represented as a monotonically non-decreasing stream of triples
that are annotated with their timestamp. These require continuous processing [33] of
queries because of the constantly changing data.
C-SPARQL [15] is an approach to querying over static and dynamic data. This system
requires the client to register a query to the server in an extended SPARQL syntax that
allows the use of windows over dynamic data. This query registration [33, 124] must oc-
cur by clients to make sure that the streaming-enabled SPARQL endpoint can continu-
ously re-evaluate this query, as opposed to traditional endpoints where the query is evalu-
ated only once. A window [125] is a subsection of facts ordered by time so that not all
available information has to be taken into account while processing. These windows can
have a certain size which indicates the time range and is advanced in time by a stepsize.
C-SPARQL’s execution of queries is based on the combination of a regular SPARQL en-
gine with a Data Stream Management System (DSMS) [125]. The internal model of C-
SPARQL creates queries that distribute work between the DSMS and the SPARQL en-
gine to respectively process the dynamic and static data.
CQELS [16] is a white box approach, as opposed to black box approaches like C-SPAR-
QL. This means that CQELS natively implements all query operators without transform-
ing it to another language, removing the overhead of delegating it to another system. The
syntax is similar to that of C-SPARQL, also supporting query registration and time win-

136

dows. According to previous research on CQELS [16], CQELS performs much better
than C-SPARQL for large datasets; for simple queries and small datasets the opposite is
true.

5.2.4. Triple Pattern Fragments
Experiments have shown that more than half of public SPARQL endpoints have an avail-
ability of less than 95% [117]. Any number of clients can send arbitrarily complex SPAR-
QL queries, which could form a bottleneck in endpoints. Triple Pattern Fragments
(TPF) [36] aim to solve this issue of high interface cost by moving part of the query eval-
uation to the client, which reduces the server load, at the cost of increased query times
and bandwidth. The purposely limited interface only accepts separate triple pattern
queries. Clients can use it to evaluate more complex SPARQL queries locally, also over
federations of interfaces.

5.3. Problem Statement
In order to lower server load during continuous query evaluation, we move a significant
part of the query evaluation from server to client. We annotate dynamic data with their
valid time to make it possible for clients to derive an optimal query evaluation frequency.
For this research, we identified the following research questions:

Can clients use volatility knowledge to perform more efficient continuous SPARQL
query evaluation by polling for data?
How does the client and server load of our solution compare to alternatives?
How do different time-annotation methods perform in terms of the resulting execution
times?

These research questions lead to the following hypotheses:
1. The proposed framework has a lower server cost than alternatives.
2. The proposed framework has a higher client cost than streaming-based SPARQL
approaches for equivalent queries.
3. Client-side caching of static data reduces the execution times proportional to the
fraction of static triple patterns that are present in the query.

5.4. Use Case
A guiding use case, based on public transport, will be referred to in the remainder of this
paper. When public transport route planning applications return dynamic data, they can
account for factors such as train delays as part of a continuously updating route plan. In
this use case, different clients need to obtain all train departure information for a certain
station. This requires the following concepts:

Departure (static): Unique IRI for the departure of a certain train.
Headsign (static): The label of the train showing its destination.
Departure Time (static): The scheduled departure time of the train.
Route Label (static): The identifier for the train and its route.

137

Delay (dynamic): The delay of the train, which can increase through time.
Platform (dynamic): The platform number of the station at which the train will de-
part, which can be changed through time if delays occur.

Listing 5 shows example data in this model. The SPARQL query in Listing 6 can retrieve
all information using this basic data model.

5.5. Dynamic Data Representation
Our solution consists of a partial redistribution of query evaluation workload from the
server to the client, which requires the client to be able to access the server data. There
needs to be a distinction between regular static data and continuously updating dynamic
data in the server’s dataset. For this, we chose to define a certain temporal range in which
these dynamic facts are valid, as a consequence the client will know when the data be-
comes invalid and has to fetch new data to remain up-to-date. To capture the temporal
scope of data triples, we annotate this data with time. In this section, we discuss two dif-
ferent types of time labeling, and different methods to annotate this data.

Listing 5: Train information with static time information according to the basic data
model.

@prefix t: <http://example.org/train/>.
@prefix td: <http://example.org/traindata/>.
td:departure-48 t:delay "0S"^^xsd:xs:duration;
 t:platform td:platform-1a;
 t:departureTime "2014-12-05T10:37:00+01:00"^^xsd:da
 t:headSign "Ghent";
 t:routeLabel "IC 1831".

SELECT ?delay ?platform ?headSign ?routeLabel ?departureTime
WHERE {
 _:id t:delay ?delay.
 _:id t:platform ?platform.
 _:id t:departureTime ?departureTime.
 _:id t:headSign ?headSign.
 _:id t:routeLabel ?routeLabel.
 FILTER (?departureTime > "2015-12-08T10:20:00"^^xsd:dateTime).
 FILTER (?departureTime < "2015-12-08T11:20:00"^^xsd:dateTime).
}

Listing 6: The basic SPARQL query for retrieving all upcoming train departure
information in a certain station. The two first triple patterns are dynamic, the last three

are static.

138

5.5.1. Time Labeling Types
We use interval-based labeling to indicate the start and endpoint of the period during
which triples are valid. Point-based labeling is used to indicate the expiration time.
With expiration times, we only save the latest version of a given fact in a dataset, assum-
ing that the old version can be removed when a newer one arrives. These expiration times
provide enough information to determine when a certain fact becomes invalid in time.
We use time intervals for storing multiple versions of the same fact, i.e., for maintaining
a history of facts. These time intervals must indicate a start- and endtime for making it
possible to distinguish between different versions of a certain fact. These intervals cannot
overlap in time for the same facts. When data is volatile, consecutive interval-based facts
will accumulate quickly. Without techniques to aggregate or remove old data, datasets
will quickly grow, which can cause increasingly slower query executions. This problem
does not exist with expiration times because in this approach we decided to only save the
latest version of a fact, so this volatility will not have any effect on the dataset size.

5.5.2. Methods for Time Annotation
The two time labeling types introduced in the last section can be annotated on triples in
different ways. In Subsection 5.2.1 we discussed several methods for RDF annotation.
We will apply time labels to triples using the singleton properties, graphs and implicit
graphs annotation techniques.
Singleton Properties Singleton properties annotation is done by creating a singleton
property for the predicate of each dynamic triple. Each of these singleton properties can
then be annotated with its time annotation, being either a time interval or
expiration times.
Graphs To time-annotate triples using graphs, we can encapsulate triples inside contexts,
and annotate each context graph with a time annotation.
Implicit Graphs A TPF interface gives a unique IRI to each fragment corresponding to
a triple pattern, including patterns without variables, i.e., actual triples. Since Triple Pat-
tern Fragments are the basis of our solution, we can interpret each fragment as a graph.
We will refer to these as implicit graphs. This IRI can then be used as graph identifier for
this triple for adding time information. For example, the IRI for the triple <s> <p>
<o> on the TPF interface located at http:/ / example.org/dataset/ is
http:/ / example.org/dataset?subject=s&predicate=p&object=o.
The choice of time annotation method for publishing temporal data will also depend on
its capability to group time labels. If certain dynamic triples have identical time labels,
these annotations can be shared to further reduce the required amount of triples if we are
using singleton properies or graphs. When we would have three train delay triples which
are valid for the same time interval using graph annotation, these three triples can be
placed in the same graph. This will make sure they refer to the same time interval without
having to replicate this annotation two times more. In the case of implicit graph annota-
tion, this grouping of triples is not possible, because each triple has a unique graph iden-

139

tifier determined by the interface. This would be possible if these different identifiers are
linked to each other with for example owl:sameAs relationships that our query engine
takes into account, which would introduce further overhead.
We will execute our use case for each of these annotation methods. In practice, an anno-
tation method must be chosen depending on the requirements and available technologies.
If we have a datastore that supports quads, graph-based annotation is the best choice be-
cause of it requires the least amount of triples. If our datastore does not support quads,
we can use singleton properties. If we have a TPF-like interface at which our data is host-
ed, we can use implicit graphs as annotation technique. If however many of those triples
can be grouped under the same time label, singleton properties are a better alternative be-
cause the latter has grouping support.

5.6. Query Engine
TPF query evaluation involves server and client software, because the client actively
takes part in the query evaluation, as opposed to traditional SPARQL endpoints where the
server does all of the work. Our solution allows users to send a normal SPARQL query to
the local query engine which autonomously detects the dynamic parts of the query and
continuously sends back results from that query to the user. In this section, we discuss the
architecture of our proposed solution and the most important algorithms that were used to
implement this.

5.6.1. Architecture
Our solution must be able to handle regular SPARQL 1.1 queries, detect the dynamic
parts, and produce continuously updating results for non-high frequency queries. To
achieve this, we chose to build an extra software layer on top of the existing TPF client
that supports each discussed labeling type and annotation method and is capable of doing
dynamic query transformation and result streaming. At the TPF server, dynamic data
must be annotated with time depending on the used combination of labeling type and
method. The server expects dynamic data to be pushed to the platform by an external
process with varying data. In the case of graph-based annotation, we have to extend the
TPF server implementation, so that it supports quads. This dynamic data should be
pushed to the platform by an external process with varying data.

140

Fig. 41 shows an overview of the architecture for this extra layer on top of the TPF
client, which will be called the TPF Query Streamer from now on. The left-hand side
shows the User that can send a regular SPARQL query to the TPF Query Streamer entry-
point and receives a stream of query results. The system can execute queries through the
local Basic Graph Iterator, which is part of the TPF client and executes queries against a
TPF server.
The TPF Query Streamer consists of six major components. First, there is the Rewriter
module which is executed only once at the start of the query streaming loop. This module
is able to transform the original input query into a static and a dynamic query which will
respectively retrieve the static background data and the time-annotated changing data.
This transformation happens by querying metadata of the triple patterns against the entry-
point through the local TPF client. The Streamer module takes this dynamic query, exe-
cutes it and forwards its results to the Time Filter. The Time Filter checks the time anno-
tation for each of the results and rejects those that are not valid for the current time. The
minimal expiration time of all these results is then determined and used as a delayed call
to the Streamer module to continue with the streaming loop, which is determined by the
repeated invocation of the Streamer module. This minimal expiration time will make sure
that when at least one of the results expire, a new set of results will be fetched as part of
the next query iteration. The filtered dynamic results will be passed on to the Materializ-
er which is responsible for creating materialized static queries. This is a transformation
of the static query with the dynamic results filled in. These materialized static queries are
passed to the Result Manager which is able to cache these queries. Finally, the Result
Manager retrieves previous materialized static query results from the local cache or exe-
cutes this query for the first time and stores its results in the cache. These results are then
sent to the client who had initiated continuous query.

Fig. 41: Overview of the proposed client-server architecture.

141

5.6.2. Algorithms
Query rewriting As mentioned in the previous section, the Rewriter module performs a
preprocessing step that can transform a regular SPARQL 1.1 query into a static and dy-
namic query. A first step in this transformation is to detect which triple patterns inside the
original query refer to static triples and which refer to dynamic triples. We detect this by
making a separate query for each of the triple patterns and transforming each of them to a
dynamic query. An example of such a transformation can be found in Listing 7. We then
evaluate each of these transformed queries and assume a triple pattern is dynamic if its
corresponding query has at least one result. Another step before the actual query splitting
is the conversion of blank nodes to variables. We will end up with one static query and
one dynamic query, in case these graphs were originally connected, they still need to be
connected after the query splitting. This connection is only possible with variables that
are visible, meaning that these variables need to be part of the SELECT clause. However,
a variable can also be anonymous and not visible: these are blank nodes. To make sure
that we take into account blank nodes that connect the static and dynamic graph, these
nodes have to be converted to variables, while maintaining their semantics. After this
step, we iterate over each triple pattern of the original query and assign them to either the
static or the dynamic query depending on whether or not the pattern is respectively static
or dynamic. This assignment must maintain the hierarchical structure of the original
query, in some cases this causes triple patterns to be present in the dynamic query when
using complex operators like UNION to maintain correct query semantics. An example of
this query transformation for our basic query from Listing 6 can be found in Listing 8
and Listing 9.

SELECT ?s ?p ?o ?time WHERE {
 GRAPH ?g0 { ?s ?p ?o }
 ?g0 tmp:expiration ?time
}

Listing 7: Dynamic SPARQL query for the triple pattern ?s ?p ?o for graph-based
annotation with expiration times.

SELECT ?id ?headSign ?routeLabel ?departureTime
WHERE {
 ?id t:departureTime ?departureTime.
 ?id t:headSign ?headSign.
 ?id t:routeLabel ?routeLabel.
 FILTER (?departureTime > "2015-12-08T10:20:00"^^xsd:dateTime).
 FILTER (?departureTime < "2015-12-08T11:20:00"^^xsd:dateTime).
}

Listing 8: Static SPARQL query which has been derived from the basic SPARQL
query from Listing 6 by the Rewriter module.

142

Query materialization The Materializer module is responsible for creating materialized
static queries from the static query and the current dynamic query results. This is done by
filling in each dynamic result into the static query variables. It is possible that multiple
results are returned from the dynamic query evaluation, which is the same amount of ma-
terialized static queries that can be derived. Assuming that we, for example, find the fol-
lowing single dynamic query result from the dynamic query in : {?id ↦
<http://example.org/train#train4815>, ?delay ↦
"P10S"ˆˆxsd:duration} then we can derive the materialized static query by filling
in these two variables into the static query from . The resulting query can be found in
Listing 10.

Caching The Result manager is the last step in the streaming loop for returning the mate-
rialized static query results of one time instance. This module is responsible for either
getting results for given queries from its cache, or fetching the results from the TPF
client. First, an identifier will be determined for each materialized static query. This iden-
tifier will serve as a key to cache static data and should correctly and uniquely identify
static results based on dynamic results. This is equivalent to saying that this identifier
should be the connection between the static and dynamic graphs. This connection is the
intersection of the variables present in the WHERE clause of the static and dynamic
queries. Since the dynamic query results are already available at this point, these vari-
ables all have values, so this cache identifier can be represented by these variable results.

SELECT ?id ?delay ?platform ?final0 ?final1
WHERE {
 GRAPH ?g0 { ?id t:delay ?delay. }
 ?g0 tmp:expiration ?final0.
 GRAPH ?g1 { ?id t:platform ?platform. }
 ?g1 tmp:expiration ?final1.
}

Listing 9: Dynamic SPARQL query which has been derived from the basic SPARQL
query from Listing 6 by the Rewriter module. Graph-based annotation is used with

expiration times.

PREFIX ex: <http://example.org/train#>
SELECT ?headSign ?routeLabel ?departureTime
WHERE {
 ex:train4815 t:departureTime ?departureTime.
 ex:train4815 t:headSign ?headSign.
 ex:train4815 t:routeLabel ?routeLabel.
 FILTER (?departureTime > "2015-12-08T10:20:00"^^xsd:dateTime).
 FILTER (?departureTime < "2015-12-08T11:20:00"^^xsd:dateTime).
}

Listing 10: Materialized static SPARQL query derived by filling in the dynamic query
results into the static query from Listing 10.

143

The graph connection between the static and dynamic queries from and is ?id. The
cache identifier for a result where ?id is "train:4815" is for example "?
id=train:4815".

5.7. Evaluation
In order to validate our hypotheses from Section 5.3, we set up an experiment to measure
the impact of our proposed redistribution of workload between the client and server by
simultaneously executing a set of queries against a server using our proposed solution.
We repeat this experiment for two state-of-the-art solutions: C-SPARQL and CQELS.
To test the client and server performance, our experiment consisted of one server and ten
physical clients. Each of these clients can execute from one to twenty unique concurrent
queries based on the use case from Section 5.4. The data for this experiment was derived
from real-world Belgian railway data using the iRail API (https:/ / hello.irail.be/ api/ 1- 0/).
This results in a series of 10 to 200 concurrent query executions. This setup was used to
test the client and server performance of different SPARQL streaming approaches.
For comparing the efficiency of different time annotation methods and for measuring the
effectiveness of our client-side cache, we measured the execution times of the query for
our use case from Section 5.4. This measurement was done for different annotation meth-
ods, once with the cache and once without the cache. For discovering the evolution of the
query evaluation efficiency through time, the measurements were done over each query
stream iteration of the query.
The discussed architecture was implemented in JavaScript using Node.js (https:/ / github.-
com/ LinkedDataFragments/ QueryStreamer.js/ tree/ eswc2016) to allow for easy communi-
cation with the existing TPF client.
The tests (https:/ / github.com/ rubensworks/ TPFStreamingQueryExecutor- experiments/)
were executed on the Virtual Wall (generation 2) environment from imec [126]. Each ma-
chine had two Hexacore Intel E5645 (2.4GHz) CPUs with 24 GB RAM and was running
Ubuntu 12.04 LTS. For CQELS, we used version 1.0.1 of the engine [127]. For C-SPAR-
QL, this was version 0.9 [128]. The dataset for this use case consisted of about 300 static
triples, and around 200 dynamic triples that were created and removed each ten seconds.
Even this relatively small dataset size already reveals important differences in server and
client cost, as we will discuss in the paragraphs below.

5.7.1. Server Cost
The server performance results from our main experiment can be seen in Subfig. 42.1.
On the one hand, this plot shows an increasing CPU usage for C-SPARQL and CQELS
for higher numbers of concurrent query executions. On the other hand, our solution never
reaches more than one percent of server CPU usage. Subfig. 43.1 shows a detailed view
on the measurements in the case of 200 simultaneous query executions: the CPU peaks
for the alternative approaches are much higher and more frequent than for our solution.

144

5.7.2. Client Cost
The results for the average CPU usage across the duration of the query evaluation of all
clients that sent queries to the server in our main experiment can be seen in Subfig. 42.2
and Subfig. 43.2. The clients that were sending C-SPARQL and CQELS queries to the
server had a client CPU usage of nearly zero percent for the whole duration of the query
evaluation. The clients using the client-side TPF Query Streamer solution that was pre-
sented in this work had an initial CPU peak reaching about 80%, which dropped to about
5% after 4 seconds.

5.7.3. Annotation Methods
The execution times for the different annotation methods, once with and once without
cache can be seen in Fig. 44. The three annotation methods have about the same relative
performance in all figures, but the execution times are generally lower in the case where
the client-side cache was used, except for the first query iteration. The execution times
for expiration time annotation when no cache is used are constant, while the execution
times with caching slightly decrease over time.

Fig. 42: Average server and client CPU usage for one query stream for C-SPARQL,
CQELS and the proposed solution. Our solution effectively moves complexity from

the server to the client.

Server load

Subfig. 42.1: The server CPU usage
of our solution proves to be

influenced less by the number of
clients.

Client load

Subfig. 42.2: In the case of
200 concurrent clients, client CPU
usage initially is high after which it
converges to about 5%. The usage

for C-SPARQL and CQELS is
almost non-existing.

145

Fig. 43: Detailed view on all server and client CPU measurements for C-SPARQL,
CQELS and the solution presented in this work for 200 simultaneous query

evaluations against the server.

Server load

Subfig. 43.1: Server CPU peaks for
C-SPARQL and CQELS compared

to our solution.

Client load

Subfig. 43.2: Client CPU usage for
our solution is significantly higher.

146

5.8. Conclusions
In this paper, we researched a solution for querying over dynamic data with a low server
cost, by continuously polling the data based on volatility information. In this section, we
draw conclusions from our evaluation results to give an answer to the research questions
and hypotheses we defined in Section 5.3. First, the server and client costs for our solu-
tion will be compared with the alternatives. After that, the effect of our client-side cache
will be explained. Next, we will discuss the effect of time annotation on the amount of
requests to be sent, after which the performance of our solution will be shown and the
effects of the annotation methods.

Fig. 44: Executions times for the three different types of dynamic data representation
for several subsequent streaming requests. The figures show a mostly linear increase

when using time intervals and constant execution times for annotation using expiration
times. In general, caching results in lower execution times. They also reveal that the

graph approach has the lowest execution times.

Subfig. 44.1: Time intervals without
caching.

Subfig. 44.2: Time intervals with
caching.

Subfig. 44.3: Expiration times
without caching.

Subfig. 44.4: Expiration times with
caching.

147

5.8.1. Server cost
The results from Subsection 5.7.1 confirm Hypothesis 1, in which we wanted to know if
we could lower the server cost when compared to C-SPARQL and CQELS. Not only is
the server cost for our solution more than ten times lower on average when compared to
the alternatives, this cost also increases much slower for a growing number of simultane-
ous clients. This makes our proposed solution more scalable for the server. Another dis-
advantage of C-SPARQL and CQELS is the fact that the server load for a large number
of concurrent clients varies significantly, as can be seen in Subfig. 43.1. This makes it
hard to scale the required processing powers for servers using these technologies. Our
solution has a low and more constant CPU usage.

5.8.2. Client cost
The results for the client load measurements from Subsection 5.7.2 confirm Hypothesis
2, which stated that our solution increases the client’s processing need. The required
client processing power using our solution is clearly much higher than for C-SPARQL
and CQELS. This is because we redistributed the required processing power from the
server to the client. In our solution, it is the client that has to do most of the work for
evaluating queries, which puts less load on the server. The load on the client still remains
around 5% for the largest part of the query evaluation as shown in Subfig. 42.2. Only
during the first few seconds, the query engines CPU usage peaks, which is because of the
processor-intensive rewriting step that needs to be done once at the start of each dynamic
query evaluation.

5.8.3. Caching
We can also confirm Hypothesis 3 about the positive effect of caching from the results in
Subsection 5.7.3. Our caching solution has a positive effect on the execution times. In an
optimal scenario for our use case, caching would lead to an execution time reduction of
60% because three of the five triple patterns in the query for our use case from
Section 5.4 are static. For our results, this caching leads to an average reduction of 56%
which is close to the optimal case. Since we are working with dynamic data, some re-
quired background-data is bound to overlap, in these cases it is advantageous to have a
client-side caching solution so that these redundant requests for static data can be avoid-
ed. The longer our query evaluation runs, the more static data the cache accumulates, so
the bigger the chance that there are cache hits when background data is needed in a cer-
tain query iteration. Future research should indicate what the limits of such a client-side
cache for static data are, and whether or not it is advantageous to reuse this cache for dif-
ferent queries.

148

5.8.4. Request reduction
By annotating dynamic data with a time annotation, we successfully reduced the amount
of required requests for polling-based SPARQL querying to a minimum, which answers
Research Question 1 about the question if clients can use volatility knowledge to perform
continuous querying. Because now, the client can derive the exact moment at which the
data can change on the server, and this will be used to schedule a new query execution on
the server. In future research, it is still possible to reduce the amount of requests our
client engine needs to send through a better caching strategy, which could for example
also temporarily cache dynamic data which changes at different frequencies. We can also
look into differential data transmission by only sending data to the client that has been
changed since the last time the client has requested a specific resource.

5.8.5. Performance
For answering Research Question 2, the performance of our solution compared to alter-
natives, we compared our solution with two state-of-the-art approaches for dynamic
SPARQL querying. Our solution significantly reduces the required server processing per
client, this complexity is mostly moved to the client. This comparison shows that our
technique allows data providers to offer dynamic data which can be used to continuously
evaluate dynamic queries with a low server cost. Our low-cost publication technique for
dynamic data is useful when the number of potential simultaneous clients is large. When
this data is needed for only a small number of clients in a closed off environment and
query evaluation must happen fast, traditional approaches like CQELS or C-SPARQL are
advised. These are only two possible points on the Linked Data Fragments axis [36], de-
pending on the publication requirements, combinations of these approaches can be used.

5.8.6. Annotation methods
In Research Question 3, we wanted to know how the different annotation methods influ-
enced the execution times. From the results in Subsection 5.7.3, we can conclude that
graph-based annotation results in the lowest execution times. It can also be seen that an-
notation with time intervals has the problem of continuously increasing execution times,
because of the continuously growing dataset. Time interval annotation can be desired if
we for example want to maintain the history of certain facts, as opposed to just having
the last version of facts using expiration times. In future work, we will investigate alter-
native techniques to support time interval annotation without the continuously increasing
execution times.
In this work, the frequency at which our queries are updated is purely data-driven using
time intervals or expiration times. In the future it might be interesting, to provide a con-
trol to the user to change this frequency, if for example this user only desires query up-
dates at a lower frequency than the data actually changes.

149

In future work, it is important to test this approach with a larger variety of use cases. The
time annotation mechanisms we use are generic enough to transform all static facts to dy-
namic data for any number of triples. The CityBench [34] benchmark can for example be
used to evaluate these different cases based on city sensor data. These tests must be
scaled (both in terms of clients as in terms of dataset size), so that the maximum number
of concurrent requests can be determined, with respect to the dataset size.

150

5.9. Addendum
In this section, I summarize the follow-up work that has been done since the article corre-
sponding to this chapter has been published. Concretely, I focus on “On the Semantics of
TPF-QS towards Publishing and Querying RDF Streams at Web-scale” [129] that has
been published two years after the work from this chapter. This article aims to resolve
some of the initial weaknesses. Concretely, a proper formalization is introduced, using
which the system (TPF-QS) is compared using alternative RDF stream processing sys-
tems. Furthermore, a more extensive evaluation is done using a state of the art bench-
mark. These two parts are summarized hereafter.

5.9.1. Formalization
RSP-QL [130] is a formal reference model in which different RDF Stream Processing
(RSP) systems can be compared to each other, such as C-SPARQL [15], CQELS [16] and
TPF-QS [96]. It can be seen as an extension of RDF and SPARQL, by introducing tem-
poral semantics. In the next paragraphs, I will summarize the RSP-QL model, explain
how TPF-QS fits into this, and how TPF-QS can be compared to alternative RSP systems
using this model. I will omit the details and full formal definitions that can be found in
the full paper [129].
RSP-QL Overview
RSP-QL introduces the concept of an RDF stream that is defined as an unbounded se-
quence of pairs. Each pair consists of an RDF statement and a time instant.
In order to query RDF streams, the concept of an RDF dataset was extended to an RSP-
QL dataset. Such a dataset consists of an optional default graph, zero or more named
graphs, and zero or more (named) time-varying graphs. A time-varying graph is a func-
tion that maps time instants to instantaneous RDF graphs.
To avoid querying over very large streams, the concept of a time-based window was in-
troduced. A time-based window is defined by a certain width, a slide parameter, and a
starting time, where all of these parameters are expressed in time units. Concretely, such
a window takes an RDF stream as input, and produces a time-varying graph.
To model the different ways in which repeated query evaluation can occur, so-called
evaluation strategies were introduced. For example, the Content Change (CC) strategy
makes the window report results when window contents change. Window Close (WC) re-
ports when the window closes. The Non-empty Content (NC) strategy reports if the active
window is not empty. The Periodic (P) stategy reports at regular time intervals.
Finally, after windowing, query execution results can be reported in different ways,
where each of them adds time annotations to the solution mappings. RStream annotates
an input sequence of solution mappings with the evaluation time; IStream streams the
difference between the answer of the current evaluation and the one of the previous itera-
tion; DStream streams the part of the answer at the previous iteration that is not in the
current one.

151

TPF-QS in terms of RSP-QL
From the perspective of a TPF-QS client, the data that was retrieved from a TPF server
can be interpreted as an RSP-QL stream, for which we introduced a formal mapping.
Based on this, all elements of the RSP-QL model can be applied.
Windows within TPF-QS can have a configurable starting time, and always have a width
and slide parameter of exactly one time unit. As a consequence, the evaluation of a win-
dow in TPF-QS will always produce a time-varying graph that contains exactly one in-
stantaneous RDF graph.
TPF-QS supports two configurable evaluation strategies: Periodic and Mapping Expire
(ME). The Mapping Expire strategy is specific to TPF-QS, and is possible because of the
time validity annotations that are exposed by TPF servers. In summary, Mapping Expire
will make the window report when the validity of an RDF statement that was used in the
last solution mapping expires.
RSP-QL Comparison
Table 16 compares the TPF-QS with C-SPARQL and CQELS in terms of the RSP-QL
reference model.

Feature TPF-QS C-SPARQL CQELS

volatile
RDF
stream

no yes yes

data
retrieval

pull push push

time
annotation

time interval timestamp timestamp

window
parameters

configurable starting time,
width and slide of one
time unit

fixed starting time,
configurable width
and slide

fixed starting time,
configurable width
and slide

RSP-QL
dataset

time varying graph in
default graph

time varying graph
in default graph

named time varying
graph

window
policy

ME, P WC, NC CC

streaming
operators

RStream RStream IStream

Table 16: Comparison TPF-QS, C-SPARQL, and CQELS in terms of the main
elements of the RSP-QL reference model.

152

5.9.2. Evaluation
While the experiments that were presented in this chapter made use of a relatively small
dataset with simple queries, our new experiments made use of the CityBench [34] bench-
mark. Using this benchmark, large-scale real-world sensor data streams were used to-
gether with a set of realistic queries, ranging from simple to complex. For an increasing
number of clients, we measured server CPU usage, result latency, result completeness.
Using CityBench, we compared TPF-QS with C-SPARQL and CQELS. Our findings
show that TPF-QS results in lower server load and latency for simple queries, but higher
for complex queries. Due to slower evaluation, TPF-QS sometimes results in lower result
completeness than the alternatives.
Results clearly show that when stream volatility is constant, and queries are not too com-
plex, TPF-QS outperforms alternative systems in terms of server load for an increasing
number of clients. However, there is still a limit in the number of concurrent clients that
can be achieved, since the results have shown that result latencies start increasing for
high numbers of clients. This shows that TPF-QS should only be used in specific use cas-
es, and that additional follow-up work is required to make it more widely applicable.

153

Chapter 6.
Conclusions
The research question of this PhD was defined as “How to store and query evolving
knowledge graphs on the Web?” The answer to this question is neither simple nor com-
plete. In this final chapter, I first summarize an answer to this question, the limitations of
my work, and I discuss future research efforts that are needed to advance this work
further.

6.1. Contributions
Based on my research question, I focussed on four main challenges:

1. Experimentation requires representative evolving data.
2. Indexing evolving data involves a trade-off between storage efficiency and
lookup efficiency.
3. Web interfaces are highly heterogeneous.
4. Publishing evolving data via a queryable interface involves continuous up-
dates to clients.

I will discuss the findings within these challenges hereafter.

6.1.1. Generating Evolving Data
In Chapter 2, the first challenge was tackled as a prerequisite for the next challenges. The
domain of public transport was chosen for this challenge, as it contains both geospatial
and temporal dimensions, which makes it useful for benchmarking RDF data manage-
ment systems that can handle various dimensions like these. Even though many real-
world public transit network design and scheduling methodologies already exist, the syn-
thetic generation of such datasets is not trivial. The goal of this work was to determine
wether or not population distributions could be used as input to such a mimicking algo-
rithm. Hence, this lead to the following research question:

Can population distribution data be used to generate realistic synthetic public trans-
port networks and scheduling?

The main hypothesis of this work was: public transport networks and schedules are cor-
related with the population distribution within the same area. This hypothesis was tested
and validated for two countries with a high level of confidence. As such, population dis-
tributions formed the basis of the mimicking algorithm of this work.

154

Inspired by real-world public transit network design and scheduling methodologies, a
multi-step algorithm was determined where regions, stops, edges, routes and trips are
generated based on any population distribution and dependency rules. To evaluate the re-
alism of generated datasets, an implementation of the algorithm was provided. For each
step in the algorithm, distance functions were determined to measure the realism for each
step. This realism was confirmed for different regions and transport types.
With the provided mimicking algorithm, synthetic public transport networks and sched-
uling can be generated based on population distributions, which answers our research
question. This tackles our initial challenge to support experimentation on systems that
handle evolving knowledge graphs.

6.1.2. Indexing Evolving Data
Next, in Chapter 3, the challenge was to determine an approach that achieves a trade-off
between storage size and lookup efficiency that is beneficial for publishing evolving
knowledge graphs on the Web. This approach had to enable a Web-friendly storage ap-
proach, so that evolving knowledge graphs can be published on the Web without requir-
ing very costly machines. Previous work has shown that by restricting queries on servers
to triple pattern queries [36], and executing more complex queries client-side, server load
can be reduced significantly. As such, our work built upon this idea by focusing on triple
pattern queries. Furthermore, to reduce memory usage during query execution, we focus
on streaming results with optional offsets. Finally, we focus on three main versioned
query atoms to support various kinds of temporal queries over evolving knowledge
graphs. This lead to the following research question:

How can we store RDF archives to enable efficient versioned triple pattern queries
with offsets?

This research question is answered by introducing (1) a storage technique for maintaining
multiple versions of a knowledge graph and (2) querying algorithms that can be used to
efficiently extract data from these versions. As was shown via our hypotheses, this stor-
age technique is a hybrid of different existing storage approaches, which lead to a trade-
off between all of them in terms of storage requirements and querying efficiency. Impor-
tant to note is that the introduced storage technique is therefore not the most optimal for
all situations. For specific use cases where only very specific query types are required,
dedicated systems will likely be more efficient. However, when the domain of queries is
broad, a more general-purpose like our approach is more fitting, as this will lead to suffi-
ciently fast query execution in most cases, with acceptable storage requirements.
In conclusion, our storage approach can be used be used as a backend for publishing
evolving knowledge graphs through a low-cost triple pattern interface, which has been
illustrated via Versioned Triple Pattern Fragments [42] on http:/ / versioned.linked-
datafragments.org/bear. Future challenges include the handling of very large numbers of
versions and improving ingestion efficiency, which both could be resolved by dynamical-
ly creating intermediary snapshots within the delta chain.

155

6.1.3. Heterogeneous Web Interfaces
In Chapter 4, the challenge on handling the heterogeneous nature of Web interfaces dur-
ing querying was tackled. This was done through the design and development of a highly
modular meta query engine (Comunica) that simplifies the handling of various kinds of
sources, and lowers the barrier for researching new query interfaces and algorithms.
In order for Comunica to be usable as a research platform, its architecture needed to be
flexible enough to handle the complete SPARQL 1.1 specification, and support heteroge-
neous interfaces. For this, the actor, mediator, and publish-subscribe software patterns
were applied to achieve an architecture where task-specific actors form building blocks,
and buses and mediators are used to handle their inter-communication, which can be
wired together through dependency injection.
With Comunica, evaluating the performance of different query algorithms and other
query-related approaches become more fair. Query algorithms are typically compared by
implementing them in separate systems, which leads to confounding factors that may im-
pact the performance results, such as the use of different programming languages or soft-
ware libraries. As Comunica consists of small task-specific building blocks, different al-
gorithms become different instances of such building blocks, which reduces confounding
during experiments.
Comunica’s architecture is flexible enough to go outside the realm of standard SPARQL.
It is for example usable to create an engine for querying over evolving knowledge
graphs [131]. Concretely, support for OSTRICH datasources from Chapter 3 was imple-
mented, together with support for versioned queries. For this, the streaming results capa-
bility of OSTRICH proved compatible and beneficial to the streaming query evaluation
of Comunica.

6.1.4. Publishing and Querying Evolving Data
Finally, Chapter 5 handled the challenge on a query interface for evolving knowledge
graphs. The main goal of this work was to determine whether (part of) the effort for exe-
cuting continuous queries over evolving knowledge graphs could be moved from server
to client, in order to allow the server to handle more concurrent clients. The outcome of
this work was a polling-based Web interface for evolving knowledge graphs, and a
client-side algorithm that is able to perform continuous queries using this interface.
The first research question of this work was:

Can clients use volatility knowledge to perform more efficient continuous SPARQL
query evaluation by polling for data?

This question was answered by annotating dynamic data server-side with time annota-
tions, and by introducing a client-side algorithm that can detect these annotations, and
determine a polling frequency for continuous query evaluation based on that. By doing
this, clients only have to re-download data from the server when it was changed. Further-
more, static data only have to be downloaded once from the server when needed, and can
therefore optimally be cached by the client. In practise, one could however argue that no

156

data is never truly indefinitely static, which is why practical implementations will require
caches with a high maximum age for static data when performing continuous querying
over long periods of time.
Our second research question was formulated as:

How does the client and server load of our solution compare to alternatives?
This question was answered by comparing the server and client load of our approach
with state of the art server-side engines. Results show a clear movement of load from
server to client, at the cost of increased bandwidth usage and execution time. The benefit
of this becomes especially clear when the number of concurrent clients increase. The
server load of our approach scales significantly better compared to other approaches for
an increasing number of clients. This is caused by the fact that each clients now helps
with query execution, which frees up a significant portion of server load. Since multiple
concurrent clients also lead to server requests for overlapping URLs, a server cache
should theoretically be beneficial as well. However, follow-up work has shown that such
a cache leads to higher server load [129] due to the high cost of cache invalidation over
dynamic data. This shows that caching dynamic data is unlikely to achieve overall per-
formance benefits. More intelligent caching techniques may lead to better efficiency, by
for example only caching data that will be valid for at least a given time period.
The final research question was defined as:

How do different time-annotation methods perform in terms of the resulting execution
times?

Results have shown that by exploiting named graphs for annotating expiration times to
dynamic data, total execution times are the lowest compared to other annotation ap-
proaches. This is caused by the fact that the named graphs approach leads to a lower
amount of triples to be downloaded from the server. And since bandwidth usage has a
significant impact on query execution times, the number of triples that need to be down-
load have such an impact.

6.1.5. Overview
By investigating these four challenges, our main research question can be answered.
Concretely, evolving knowledge graphs with a low volatility (order of minutes or slower)
can be made queryable on the Web through a low-cost polling-based interface, with a hy-
brid snapshot/delta/timestamp-based storage system in the back end. On top of this and
other interfaces, intelligent client-side query engines can perform continuous queries.
This comes at the cost of an increase in bandwidth usage and execution time, but with a
higher guarantee on result completeness as server availability is improved. All of this can
be evaluated thoroughly using synthetic evolving datasets that can for example be gener-
ated with a mimicking algorithm for public transport network.
This proves that evolving knowledge graphs can be published and queried on the Web.
Furthermore, no high-cost Web infrastructure is needed to publish or query such graphs,
which lowers the barrier for smaller, decentralized evolving knowledge graphs to be pub-
lished, without having to be a giant company with a large budget.

157

6.2. Limitations
There are several limitations to my contributions that require attention, which will be dis-
cussed hereafter.

6.2.1. Generating Evolving Data
In Chapter 2, I introduced a mimicking algorithm for generating public transport datasets.
One could however question whether such domain-specific datasets are sufficient for
testing evolving knowledge graphs systems in general. As shown in Section 2.5, the in-
troduced data model contains a relatively small number of RDF properties and classes.
While large domain specific knowledge graphs like these are valuable, domain-overlap-
ping knowledge graphs such as DBpedia [40] and Wikidata [132] many more distinct
properties and classes, which place additional demands on systems. For such cases, mul-
ti-domain (evolving) knowledge graph generators could be created in future work.
Furthermore, the mimicking algorithm produces temporal data in a batch-based manner,
instead of a continuous streaming process. This requires an evolving knowledge graph to
be produced with a fixed temporal range, and does it does not allow knowledge graphs to
evolve continuously for an non-predetermined amount of time. The latter would be valu-
able for stream processing systems that need to be evaluated for long periods of time,
which would require an adaptation to the algorithm to make it streaming.

6.2.2. Indexing Evolving Data
In Chapter 3, a storage mechanism for evolving knowledge graphs was introduced. The
main limitation of this work is that ingestion times continuously increase when more ver-
sions are added. This is caused by the fact that versions are typically relative to the previ-
ous version, whereas this storage approach handles versions relative to the initial version.
As such, such versions need to be converted at ingestion time, which takes continuously
longer for more versions. This shows that this approach can currently not be used for
knowledge graphs that evolve indefinitely long, such as DBpedia Live [78]. One possible
solution to this problem would be to fully maintain the latest version for faster relative
version recalculation.
The second main limitation is the fact that delta (DM) queries do not efficiently support
result offsets. As such, my approach is not ideal for use cases where random-access in
version differences is needed within very large evolving knowledge graphs, such as for
example finding the 10th or 1000th most read book between 2018 and 2019. My algo-
rithm naively applies an offset by iterating and voiding results until the offset amount is
reach, as opposed to the more intelligent offset algorithms for the other versioned query
types where an index is used to apply the offset. One possible solution would be to add
an additional index for optimizing the offsets for delta queries, which would also lead to
increased storage space and ingestion times.

158

6.2.3. Heterogeneous Web Interfaces
The main limitation of the Comunica meta query engine from Chapter 4 is its non-inter-
ruptible architecture. This means that once the execution of a certain query operation is
started, it can not be stopped until it is completed without killing the engine completely.
This means that meta-algorithms that dynamically switch between algorithms depending
on their execution times can not be implemented within Comunica. In order to make this
possible, a significant change to the architecture of Comunica would be required where
every actor could be interrupted after being started, where these interruptions would have
to be propagated through to chained operations.
Another limitation of Comunica is its development complexity, which is a consequence
of its modularity. Practise has shown that there is a steep learning curve for adding new
modules to Comunica, which is due to the dependency injection system that is error-
prone. To alleviate this problem, tutorials are being created and presented, and tools are
being developed to simplify the usage of the dependency injection framework. Further-
more, higher-level tools such as GraphQL-LD [133] and LDflex are being developed to
lower the barrier for querying with Comunica.

6.2.4. Publishing and Querying Evolving Data
The main limitation of our publishing and querying approach for evolving data from
Chapter 5 is the fact that it only works for slowly evolving data. From the moment that
data changes at the order of one second or faster, then the polling-based query approach
becomes too slow, and results become outdated even before they are produced. This is
mainly caused by the roundtrip times of HTTP requests, and the fact that multiple of
them are needed because of the Triple Pattern Fragments querying approach. For data
that evolves much faster, a polling-based approach like this is not a good solution. Sock-
et-like solutions where client and server maintain an open connection would be able to
reach much higher data velocities, since servers can send updates to subscribed clients
immediately, without having to wait for a client request, which reduces result latency.
The second limitation to consider is the significantly higher bandwidth usage compared
to other approaches, which has been shown in follow-up work [129]. This means that this
approach is not ideal for use cases where bandwidth is limited, such as querying from
low-end mobile devices, or querying in rural areas with a slow internet connection. This
higher bandwidth usage is inherent to the Triple Pattern Fragments approach, since more
data needs to be downloaded from the server, so that the client can process it locally.

6.3. Open Challenges
While I have formulated one possible answer the question on how to store and query
evolving knowledge graphs on the Web, this is definitely not the only answer. As such,
further research is needed on all aspects.

159

Regarding the storage aspect, alternative techniques for storing evolving knowledge
graphs with different trade-offs will be useful for different scenarios. On the one hand,
dedicated storage techniques should be developed for low-end devices, such as small sen-
sors in the Internet of Things. On the other hand, storage techniques should be developed
for very high-end devices, such as required for the infrastructure within nuclear reactors.
Furthermore, current storage solutions mainly focus on the syntactical querying over
evolving knowledge graphs, but they do not really consider the issue of semantic query-
ing [134] yet, which involves taking into account the meaning of things through ontol-
ogy-based inferencing. Semantic querying over evolving knowledge graphs is needed to
enable semantic analysis over such knowledge, such as analyzing concept drift [135] or
tracking diseases in biomedical datasets over time [136]. As such, the area of semantic
querying over evolving knowledge graphs requires further research.
During this PhD, I mainly focused on publishing and querying evolving knowledge
graphs with predictable periodicity in the order of one minute. Knowledge graphs with
faster, slower or unpredictable periodicities may require different techniques. As such,
more work is needed to investigate the impact of different kinds of evolving knowledge
graphs on publishing and querying. For instance, evolving knowledge graphs with slower
periodicities may benefit more from being published through an interface that is well
cacheable, compared to more volatile knowledge graphs.
Next, standardization efforts will be needed to truly bring evolving knowledge graphs to
the Web, in the form of temporal query languages, temporal models and exchange for-
mats. For the sake of compatibility, these should be extensions or they should be repre-
sentable in the existing Linked Data stack, which will mainly impact RDF and SPARQL.
The W3C RDF Stream Processing community group (https:/ / www.w3.org/ community/
rsp/) is a first effort that aims to explore these issues.
Due to the many remaining challenges, it will take more research and engineering effort
before we will see the true adoption of publishing and querying evolving knowledge
graphs on the Web. Nevertheless, it is important to open up these evolving knowledge
graphs to the public Web, so that humanity can benefit from this as whole, instead of
only being usable by organizations internally behind closed doors.
In a broader sense, more work will be needed to solve open problems with decentralized
knowledge graphs. The Solid ecosystem [137] is becoming an important driver within
this decentralization effort, as it offers several fundamental standards to build a decentral-
ized Web. As such, future Web research will benefit significantly by building upon these
standards. Concretely, new techniques and algorithms are needed to (1) intelligently navi-
gate the the Web by following relevant links for a given query [89], (2) enable efficient
querying over a large number of sources, (3) allow authentication-aware querying over
private data, and (4) support collaborative querying between agents that handle similar
queries.
Next to these technical issues, organizational and societal changes will also be needed.
For instance, the European General Data Protection Regulation places strict demands on
companies that handle personal data. Decentralization efforts such as Solid are being in-

160

vestigated by organizations such as governments to reshape the relationship with their
citizens [138], by giving people true ownership over their data, and making governments
data consumers.
As I placed a strong emphasis on reusability during this PhD, all of the tools and experi-
ments that were implemented are available under an open license. Furthermore, well-es-
tablished development methods from the software industry were followed to achieve im-
plementations with decent code quality and valuable usage and development documenta-
tion. This should therefore lower the barrier for other researchers in the future to build
upon this research and its tools.
For the next couple of years, I aim to focus more on the topic of querying decentralized
knowledge graphs. For this, I will collaborate further with my colleagues from IDLab,
researchers from other labs, and companies with similar goals. With this, I hope to em-
power individuals on the Web, by allowing them to find the information they want, in-
stead of what is being forced upon them, which is a fundamental human right.

161

References
1. Berners-Lee, T., Hendler, J., Lassila, O., others: The Semantic Web. Scientific Amer-

ican. 284, 28–37 (2001).
2. Paulheim, H.: Knowledge graph refinement: A survey of approaches and evaluation

methods. Semantic web. 8, 489–508 (2017).
3. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1: Concepts and Abstract Syntax.

W3C, https:/ / www.w3.org/TR/2014/REC-rdf11-concepts-20140225/ (2014).
4. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C,

https:/ / www.w3.org/TR/2013/REC-sparql11-query-20130321/ (2013).
5. Berners-Lee, T.: Linked Data. https:/ / www.w3.org/DesignIssues/LinkedData.html

(2006).
6. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. International Journal on Se-

mantic Web and Information Systems. 5, 1–24 (2009).
7. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Sys-

tems. Web Semantics: Science, Services and Agents on the World Wide Web. 3, 158–
182 (2005).

8. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: a SPARQL Perfor-
mance Benchmark. In: 2009 IEEE 25th International Conference on Data Engineer-
ing. pp. 222–233. IEEE (2009).

9. Spasić, M., Jovanovik, M., Prat-Pérez, A.: An RDF Dataset Generator for the Social
Network Benchmark with Real-World Coherence. In: Fundulaki, I., Krithara, A.,
Ngonga Ngomo, A.-C., and Rentoumi, V. (eds.) Proceedings of the Workshop on
Benchmarking Linked Data (2016).

10. Duan, S., Kementsietsidis, A., Srinivas, K., Udrea, O.: Apples and Oranges: a Com-
parison of RDF benchmarks and Real RDF Datasets. In: Proceedings of the 2011
ACM SIGMOD International Conference on Management of data. pp. 145–156.
ACM, New York, NY, USA (2011).

11. Colpaert, P., Llaves, A., Verborgh, R., Corcho, O., Mannens, E., Van de Walle, R.:
Intermodal Public Transit Routing using Linked Connections. In: Proceedings of the
14th International Semantic Web Conference: Posters and Demos. pp. 1–5 (2015).

12. Dibbelt, J., Pajor, T., Strasser, B., Wagner, D.: Intriguingly Simple and Fast Transit
Routing. In: Bonifaci, V., Demetrescu, C., and Marchetti-Spaccamela, A. (eds.) Ex-
perimental Algorithms. pp. 43–54. Springer Berlin Heidelberg, Berlin, Heidelberg
(2013).

13. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a Semantic Geospatial
DBMS. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J.,

162

Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., and
Blomqvist, E. (eds.) The Semantic Web – ISWC 2012. pp. 295–311. Springer Berlin
Heidelberg, Berlin, Heidelberg (2012).

14. Battle, R., Kolas, D.: Enabling the Geospatial Semantic Web with Parliament and
GEOSPARQL. Semantic Web. 3, 355–370 (2012).

15. Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: Querying RDF
Streams with C-SPARQL. SIGMOD Rec. 39, 20–26 (2010).

16. Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A Native and Adaptive
Approach for Unified Processing of Linked Streams and Linked Data. In: Aroyo, L.,
Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., and Blomqvist, E.
(eds.) The Semantic Web – ISWC 2011. pp. 370–388. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011).

17. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: A Benchmark for Geospa-
tial RDF Stores. In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Par-
reira, J.X., Aroyo, L., Noy, N., Welty, C., and Janowicz, K. (eds.) Proceedings of the
12th International Semantic Web Conference. pp. 343–359. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2013).

18. Le-Phuoc, D., Dao-Tran, M., Pham, M.-D., Boncz, P., Eiter, T., Fink, M.: Linked
Stream Data Processing Engines: Facts and Figures. In: Cudré-Mauroux, P., Heflin,
J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J.,
Schreiber, G., Bernstein, A., and Blomqvist, E. (eds.) The Semantic Web – ISWC
2012. pp. 300–312. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).

19. Guihaire, V., Hao, J.-K.: Transit Network Design and Scheduling: A Global Review.
Transportation Research Part A: Policy and Practice. 42, 1251–1273 (2008).

20. Nascimento, M.A., Pfoser, D., Theodoridis, Y.: Synthetic and Real Spatiotemporal
Datasets. IEEE Data Eng. Bull. 26, 26–32 (2003).

21. Brinkhoff, T.: A Framework for Generating Network-based Moving Objects. GeoIn-
formatica. 6, 153–180 (2002).

22. Lin, P.J., Samadi, B., Cipolone, A., Jeske, D.R., Cox, S., Rendon, C., Holt, D., Xiao,
R.: Development of a Synthetic Data Set Generator for Building and Testing Infor-
mation Discovery Systems. In: Third International Conference on Information Tech-
nology: New Generations (ITNG’06). pp. 707–712. IEEE (2006).

23. Angles, R., Boncz, P., Larriba-Pey, J., Fundulaki, I., Neumann, T., Erling, O.,
Neubauer, P., Martinez-Bazan, N., Kotsev, V., Toma, I.: The Linked Data Benchmark
Council: a Graph and RDF Industry Benchmarking Effort. ACM SIGMOD Record.
43, 27–31 (2014).

24. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algo-
rithms. In: Lerner, J., Wagner, D., and Zweig, K.A. (eds.) Algorithmics of Large and
Complex Networks: Design, Analysis, and Simulation. pp. 117–139. Springer Berlin
Heidelberg, Berlin, Heidelberg (2009).

25. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient Models for Timetable In-
formation in Public Transportation Systems. Journal of Experimental Algorithmics
(JEA). 12, 2.4:1–2.4:39 (2008).

163

26. Tate, R.F.: Correlation between a discrete and a continuous variable. Point-biserial
correlation. The Annals of mathematical statistics. 25, 603–607 (1954).

27. Bast, H., Hertel, M., Storandt, S.: Scalable Transfer Patterns. 2016 Proceedings of the
Eighteenth Workshop on Algorithm Engineering and Experiments (ALENEX). 15–
29

28. Colpaert, P., Chua, A., Verborgh, R., Mannens, E., Van de Walle, R., Vande Moere,
A.: What public transit API logs tell us about travel flows. In: Proceedings of the 6th
USEWOD Workshop on Usage Analysis and the Web of Data. pp. 873–878. In-
ternational World Wide Web Conferences Steering Committee, Republic and Canton
of Geneva, Switzerland (2016).

29. Gray, J.: Benchmark Handbook: for Database and Transaction Processing Systems.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, http:/ / citeseerx.ist.p-
su.edu/showciting?cid=9035 (1992).

30. Petzka, H., Stadler, C., Katsimpras, G., Haarmann, B., Lehmann, J.: Benchmarking
Faceted Browsing Capabilities of Triplestores. Proceedings of the 13th International
Conference on Semantic Systems. 128–135 (2017).

31. Eno, J., Thompson, C.W.: Generating Synthetic Data to Match Data Mining Patterns.
IEEE Internet Computing. 12, (2008).

32. Wong, S.C., Gatt, A., Stamatescu, V., McDonnell, M.D.: Understanding Data Aug-
mentation for Classification: When to Warp? In: Digital Image Computing: Tech-
niques and Applications (DICTA), 2016 International Conference on. pp. 1–6. IEEE
(2016).

33. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a Streaming World! Rea-
soning upon Rapidly Changing Information. Intelligent Systems, IEEE. 24, 83–89
(2009).

34. Ali, M.I., Gao, F., Mileo, A.: CityBench: a Configurable Benchmark to Evaluate RSP
engines using Smart City Datasets. In: Arenas, M., Corcho, O., Simperl, E.,
Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J.,
Thirunarayan, K., and Staab, S. (eds.) International Semantic Web Conference. pp.
374–389. Springer International Publishing, Cham (2015).

35. Georgala, K., Spasić, M., Jovanovik, M., Petzka, H., Röder, M., Ngomo, A.-C.N.:
MOCHA2017: The Mighty Storage Challenge at ESWC 2017. In: Dragoni, M.,
Solanki, M., and Blomqvist, E. (eds.) Semantic Web Challenges. pp. 3–15. Springer
International Publishing, Cham (2017).

36. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L., De
Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: a Low-cost
Knowledge Graph Interface for the Web. Journal of Web Semantics. 37–38, 184–206
(2016).

37. Fernández, J.D., Polleres, A., Umbrich, J.: Towards Efficient Archiving of Dynamic
Linked Open Data. In: Debattista, J., d’Aquin, M., and Lange, C. (eds.) Proceedings
of te First DIACHRON Workshop on Managing the Evolution and Preservation of
the Data Web. pp. 34–49 (2015).

38. Umbrich, J., Decker, S., Hausenblas, M., Polleres, A., Hogan, A.: Towards Dataset
Dynamics: Change Frequency of Linked Open Data Sources. 3rd International Work-

164

shop on Linked Data on the Web (LDOW). (2010).
39. Meimaris, M., Papastefanatos, G., Viglas, S., Stavrakas, Y., Pateritsas, C., Anagnos-

topoulos, I.: A Query Language for Multi-version Data Web Archives. Expert Sys-
tems. 33, 383–404 (2016).

40. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A
Nucleus for a Web of Open Data. In: The semantic web. pp. 722–735. Springer
(2007).

41. Neumann, T., Weikum, G.: RDF-3X: a RISC-style engine for RDF. Proceedings of
the VLDB Endowment. 1, 647–659 (2008).

42. Taelman, R., Vander Sande, M., Verborgh, R., Mannens, E.: Versioned Triple Pattern
Fragments: A Low-cost Linked Data Interface Feature for Web Archives. In: Pro-
ceedings of the 3rd Workshop on Managing the Evolution and Preservation of the
Data Web (2017).

43. Vander Sande, M., Verborgh, R., Hochstenbach, P., Van de Sompel, H.: Towards Sus-
tainable Publishing and Querying of Distributed Linked Data Archives. Journal of
Documentation. 73, (2017).

44. Van de Sompel, H., Nelson, M.L., Sanderson, R., Balakireva, L.L., Ainsworth, S.,
Shankar, H.: Memento: Time travel for the Web. arXiv preprint arXiv:0911.1112.
(2009).

45. Erling, O., Mikhailov, I.: Virtuoso: RDF Support in a Native RDBMS. In: Virgilio, R.
de, Giunchiglia, F., and Tanca, L. (eds.) Semantic Web Information Management: A
Model-Based Perspective. pp. 501–519. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2010).

46. Wallgrün, J.O., Frommberger, L., Wolter, D., Dylla, F., Freksa, C.: Qualitative Spatial
Representation and Reasoning in the SparQ-toolbox. In: International Conference on
Spatial Cognition. pp. 39–58. Springer (2006).

47. Pham, M.-D., Passing, L., Erling, O., Boncz, P.: Deriving an Amergent Relational
Schema from RDF Data. In: Proceedings of the 24th International Conference on
World Wide Web. pp. 864–874. International World Wide Web Conferences Steering
Committee (2015).

48. Pham, M.-D., Boncz, P.: Exploiting Emergent Schemas to make RDF Systems More
Efficient. In: International Semantic Web Conference. pp. 463–479. Springer (2016).

49. Meimaris, M., Papastefanatos, G., Mamoulis, N., Anagnostopoulos, I.: Extended
Characteristic Sets: Graph Indexing for SPARQL Query Optimization. In: Data Engi-
neering (ICDE), 2017 IEEE 33rd International Conference on. pp. 497–508. IEEE
(2017).

50. Montoya, G., Skaf-Molli, H., Hose, K.: The Odyssey Approach for Optimizing Fed-
erated SPARQL Queries. In: International Semantic Web Conference. pp. 471–489.
Springer (2017).

51. Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple Indexing for Semantic Web
Data Management. Proceedings of the VLDB Endowment. 1, 1008–1019 (2008).

52. Yuan, P., Liu, P., Wu, B., Jin, H., Zhang, W., Liu, L.: TripleBit: a Fast and Compact
System for Large Scale RDF Data. Proceedings of the VLDB Endowment. 6, 517–
528 (2013).

165

53. Álvarez-Garcı́a Sandra, Brisaboa, N.R., Fernández, J.D., Martı́nez-Prieto Miguel A:
Compressed K2-triples for Full-in-memory RDF Engines. arXiv preprint
arXiv:1105.4004. (2011).

54. Brisaboa, N.R., Cerdeira-Pena, A., Fariña, A., Navarro, G.: A Compact RDF store
using Suffix Arrays. In: International Symposium on String Processing and Informa-
tion Retrieval. pp. 103–115. Springer (2015).

55. Fernández, J.D., Martínez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.: Binary
RDF Representation for Publication and Exchange (HDT). Web Semantics: Science,
Services and Agents on the World Wide Web. 19, 22–41 (2013).

56. Martı́nez-Prieto Miguel A, Gallego, M.A., Fernández, J.D.: Exchange and Consump-
tion of Huge RDF Data. In: Extended Semantic Web Conference. pp. 437–452.
Springer (2012).

57. Beek, W., Rietveld, L., Bazoobandi, H.R., Wielemaker, J., Schlobach, S.: LOD Laun-
dromat: a Uniform Way of Publishing Other People’s Dirty Data. In: International
Semantic Web Conference. pp. 213–228. Springer (2014).

58. Suvee, D.: Fluxgraph. https:/ / github.com/datablend/fluxgraph (2012).
59. Montag, D.: Neo4j Versioning. https:/ / github.com/dmontag/neo4j-versioning (2011).
60. Cattuto, C.: Representing Time Dependent Graphs in Neo4j. https:/ / github.com/So-

cioPatterns/neo4j-dynagraph/wiki/Representing-time-dependent-graphs-in-Neo4j
(2013).

61. Staff, N.: Modeling a Multilevel Index in Neoj4. https:/ / neo4j.com/blog/modeling-a-
multilevel-index-in-neoj4/ (2012).

62. Fernández, J.D., Umbrich, J., Polleres, A., Knuth, M.: Evaluating Query and Storage
Strategies for RDF Archives. Semantic Web Journal. (2018).

63. Volkel, M., Winkler, W., Sure, Y., Kruk, S.R., Synak, M.: Semversion: A Versioning
System for RDF and Ontologies. In: Second European Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, May 29–June 1, 2005. Proceedings (2005).

64. Cassidy, S., Ballantine, J.: Version Control for RDF Triple Stores. ICSOFT
(ISDM/EHST/DC). 7, 5–12 (2007).

65. Vander Sande, M., Colpaert, P., Verborgh, R., Coppens, S., Mannens, E., Van de
Walle, R.: R&Wbase: Git for Triples. In: Proceedings of the 6th Workshop on Linked
Data on the Web (2013).

66. Graube, M., Hensel, S., Urbas, L.: R43ples: Revisions for Triples. In: Proceedings of
the 1st Workshop on Linked Data Quality co-located with 10th International Confer-
ence on Semantic Systems (SEMANTiCS 2014) (2014).

67. Hauptmann, C., Brocco, M., Wörndl, W.: Scalable Semantic Version Control for
Linked Data Management. In: Proceedings of the 2nd Workshop on Linked Data
Quality co-located with 12th Extended Semantic Web Conference (ESWC 2015),
Portorož, Slovenia (2015).

68. Neumann, T., Weikum, G.: x-RDF-3X: Fast Querying, High Update Rates, and Con-
sistency for RDF Databases. Proceedings of the VLDB Endowment. 3, 256–263
(2010).

69. Gao, S., Gu, J., Zaniolo, C.: RDF-TX: A Fast, User-Friendly System for Querying
the History of RDF Knowledge Bases. In: Proceedings of the 19th International Con-

166

ference on Extending DatabaseTechnology. pp. 269–280 (2016).
70. Cerdeira-Pena, A., Farina, A., Fernández, J.D., Martı́nez-Prieto Miguel A: Self-In-

dexing RDF Archives. In: Data Compression Conference (DCC), 2016. pp. 526–535.
IEEE (2016).

71. Anderson, J., Bendiken, A.: Transaction-time Queries in Dydra. In: Joint Proceedings
of the 2nd Workshop on Managing the Evolution and Preservation of the Data Web
(MEPDaW 2016) and the 3rd Workshop on Linked Data Quality (LDQ 2016) co-lo-
cated with 13th European Semantic Web Conference (ESWC 2016): MEPDaW-
LDQ. pp. 11–19 (2016).

72. Meinhardt, P., Knuth, M., Sack, H.: TailR: a Platform for Preserving History on the
Web of Data. In: Proceedings of the 11th International Conference on Semantic Sys-
tems. pp. 57–64. ACM (2015).

73. Roundy, D.: Darcs. http:/ / darcs.net (2008).
74. Bizer, C., Cyganiak, R.: RDF 1.1 TriG. World Wide Web Consortium, https:/ /

www.w3.org/TR/trig/ (2014).
75. Im, D.-H., Lee, S.-W., Kim, H.-J.: A Version Management Framework for RDF

Triple Stores. International Journal of Software Engineering and Knowledge Engi-
neering. 22, 85–106 (2012).

76. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In: International semantic web confer-
ence. pp. 54–68. Springer (2002).

77. Thompson, B.B., Personick, M., Cutcher, M.: The Bigdata® RDF Graph Database.
Linked Data Management. 193–237 (2014).

78. Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: DBpedia and the Live
Extraction of Structured Data from Wikipedia. Program. 46, 157–181 (2012).

79. Neumaier, S., Umbrich, J., Polleres, A.: Automated Auality Assessment of Metadata
Across Open Data Portals. Journal of Data and Information Quality (JDIQ). 8, 2
(2016).

80. McBride, B.: Jena: A Semantic Web Toolkit. IEEE Internet computing. 6, 55–59
(2002).

81. Meimaris, M., Papastefanatos, G.: The EvoGen Benchmark Suite for Evolving RDF
Data. In: Proceedings of the 2nd Workshop on Managing the Evolution and Preserva-
tion of the Data Web. pp. 20–35 (2016).

82. Taelman, R., Verborgh, R., Mannens, E.: Exposing RDF Archives using Triple Pat-
tern Fragments. In: Proceedings of the 20th International Conference on Knowledge
Engineering and Knowledge Management: Posters and Demos (2016).

83. Stefanidis, K., Chrysakis, I., Flouris, G.: On Designing Archiving Policies for Evolv-
ing RDF Datasets on the Web. In: International Conference on Conceptual Modeling.
pp. 43–56. Springer (2014).

84. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL Query Optimization.
In: Proceedings of the 13th International Conference on Database Theory. pp. 4–33
(2010).

85. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic
Graph Pattern Optimization Using Selectivity Estimation. In: Proceedings of the 17th

167

International Conference on World Wide Web. pp. 595–604 (2008).
86. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Pellegrini, T.,

Auer, S., Tochtermann, K., and Schaffert, S. (eds.) Networked Knowledge - Net-
worked Media: Integrating Knowledge Management, New Media Technologies and
Semantic Systems. pp. 7–24. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).

87. Cheng, J., Ma, Z.M., Yan, L.: f-SPARQL: A Flexible Extension of SPARQL. In:
Bringas, P.G., Hameurlain, A., and Quirchmayr, G. (eds.) Database and Expert Sys-
tems Applications. pp. 487–494. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010).

88. Feigenbaum, L., Todd Williams, G., Grant Clark, K., Torres, E.: SPARQL 1.1 Proto-
col. W3C, https:/ / www.w3.org/TR/2013/REC-sparql11-protocol-20130321/ (2013).

89. Hartig, O.: An Overview on Execution Strategies for Linked Data Queries. Daten-
bank-Spektrum. 13, 89–99 (2013).

90. Van Herwegen, J., Verborgh, R., Mannens, E., Van de Walle, R.: Query Execution
Optimization for Clients of Triple Pattern Fragments. In: Gandon, F., Sabou, M.,
Sack, H., d’Amato, C., Cudré-Mauroux, P., and Zimmermann, A. (eds.) The Seman-
tic Web. Latest Advances and New Domains. pp. 302–318 (2015).

91. Vander Sande, M., Verborgh, R., Van Herwegen, J., Mannens, E., Van de Walle, R.:
Opportunistic Linked Data Querying through Approximate Membership Metadata.
In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K.,
Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., and Staab, S. (eds.) The Se-
mantic Web – ISWC 2015. pp. 92–110. Springer (2015).

92. Van Herwegen, J., De Vocht, L., Verborgh, R., Mannens, E., Van de Walle, R.: Sub-
string Filtering for Low-Cost Linked Data Interfaces. In: Arenas, M., Corcho, O.,
Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M.,
Heflin, J., Thirunarayan, K., and Staab, S. (eds.) The Semantic Web – ISWC 2015.
pp. 128–143. Springer (2015).

93. Acosta, M., Vidal, M.-E.: Networks of Linked Data Eddies: An Adaptive Web Query
Processing Engine for RDF Data. In: Arenas, M., Corcho, O., Simperl, E.,
Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J.,
Thirunarayan, K., and Staab, S. (eds.) The Semantic Web – ISWC 2015. pp. 111–127
(2015).

94. Hartig, O., Buil-Aranda, C.: Bindings-Restricted Triple Pattern Fragments. In: De-
bruyne, C., Panetto, H., Meersman, R., Dillon, T., Kühn, eva, O’Sullivan, D., and
Ardagna, C.A. (eds.) Proceedings of the 15th International Conference on Ontolo-
gies, DataBases, and Applications of Semantics. pp. 762–779 (2016).

95. Folz, P., Skaf-Molli, H., Molli, P.: CyCLaDEs: a Decentralized Cache for Triple Pat-
tern Fragments. In: International Semantic Web Conference. pp. 455–469. Springer
(2016).

96. Taelman, R., Verborgh, R., Colpaert, P., Mannens, E.: Continuous Client-side Query
Evaluation over Dynamic Linked Data. In: International Semantic Web Conference.
pp. 273–289. Springer (2016).

97. Aasman, J.: AllegroGraph: RDF triple database. Cidade: Oakland Franz Incorporat-
ed. 17, (2006).

168

98. RDFLib. https:/ / rdflib.readthedocs.io/en/stable/
99. rdflib.js. https:/ / github.com/linkeddata/rdflib.js

100. rdfstore-js. https:/ / github.com/antoniogarrote/rdfstore-js
101. Verborgh, R., Dumontier, M.: A Web API ecosystem through feature-based reuse.

CoRR. abs/1609.07108, (2016).
102. Lanthaler, M., Gütl, C.: Hydra: A Vocabulary for Hypermedia-Driven Web APIs. In:

Proceedings of the 6th Workshop on Linked Data on the Web (2013).
103. Taelman, R., Verborgh, R.: Declaratively Describing Responses of Hypermedia-Dri-

ven Web APIs. In: Proceedings of the 9th International Conference on Knowledge
Capture (2017).

104. Birman, K., Joseph, T.: Exploiting Virtual Synchrony in Distributed Systems. ACM,
https:/ / www.cs.cornell.edu/home/rvr/sys/p123-birman.pdf (1987).

105. Hewitt, C., Bishop, P., Steiger, R.: Session 8 Formalisms for Artificial Intelligence a
Universal Modular Actor Formalism for Artificial Intelligence. In: Advance Papers
of the Conference. p. 235. Stanford Research Institute (1973).

106. Gamma, E.: Design patterns: Elements of Reusable Object-Oriented Software. Pear-
son Education India, https:/ / www.oreilly.com/library/view/design-patterns-
elements/0201633612/ (1995).

107. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern.
https:/ / martinfowler.com/articles/injection.html (2004).

108. Taelman, R.: Components.js. http:/ / componentsjs.readthedocs.io/en/latest/
109. Van Herwegen, J., Taelman, R., Capadisli, S., Verborgh, R.: Describing Configura-

tions of Software Experiments as Linked Data. In: Proceedings of the 1st Workshop
on Enabling Open Semantic Science (2017).

110. Consortium, W.W.W., others: JSON-LD 1.0: a JSON-based Serialization for Linked
Data. (2014).

111. Grant Clark, K., Feigenbaum, L., Torres, E.: SPARQL 1.1 Query Results JSON For-
mat. W3C, https:/ / www.w3.org/TR/2013/REC-sparql11-results-json-20130321/
(2013).

112. Hawke, S.: SPARQL Query Results XML Format (Second Edition). W3C, https:/ /
www.w3.org/TR/rdf-sparql-XMLres/ (2013).

113. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C, https:/
/ www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/ (2008).

114. Taelman, R., Vander Sande, M., Verborgh, R.: OSTRICH: Versioned Random-Access
Triple Store. In: Proceedings of the 27th International Conference Companion on
World Wide Web (2018).

115. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified Stress Testing of RDF
Data Management Systems. In: Proceedings of the 13th International Semantic Web
Conference - Part I. pp. 197–212. Springer-Verlag New York, Inc. (2014).

116. Facebook, I.: GraphQL. Working Draft, Oct. 2016. http:/ /
facebook.github.io/graphql/October2016/

117. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL Web-
Querying Infrastructure: Ready for Action? In: The Semantic Web–ISWC 2013. pp.
277–293. Springer (2013).

169

118. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and Complexity of SPARQL. In: In-
ternational semantic web conference. pp. 30–43. Springer (2006).

119. Taelman, R., Verborgh, R., Colpaert, P., Mannens, E., Van de Walle, R.: Continuously
Updating Query Results over Real-Time Linked Data. In: Proceedings of the 2nd
Workshop on Managing the Evolution and Preservation of the Data Web (2016).

120. Klyne, G., J. Carroll, J.: Resource Description Framework (RDF): Concepts and Ab-
stract Syntax. W3C, http:/ / www.w3.org/TR/2004/REC-rdf-concepts-20040210/
(2004).

121. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t Like RDF Reification? Making State-
ments About Statements Using Singleton Property. In: Proceedings of the 23rd In-
ternational Conference on World Wide Web. pp. 759–770. ACM, New York, NY,
USA (2014).

122. Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal RDF. In: The Semantic Web: Re-
search and Applications. pp. 93–107. Springer (2005).

123. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing Time into RDF. Knowledge
and Data Engineering, IEEE Transactions on. 19, 207–218 (2007).

124. Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Stream Reason-
ing: Where We Got So Far. In: Proceedings of the NeFoRS2010 Workshop (2010).

125. Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Sri-
vastava, U., Widom, J.: STREAM: The Stanford Data Stream Management System.
Book chapter. (2004).

126. iLab.t, iMinds: Virtual Wall: wired networks and applications. http:/ /
ilabt.iminds.be/virtualwall

127. Levan, C.: CQELS engine: Instructions on Experimenting CQELS. https:/ /
code.google.com/p/cqels/wiki/CQELS_engine

128. StreamReasoning: Continuous SPARQL (C-SPARQL) Ready To Go Pack. http:/ /
streamreasoning.org/download

129. Taelman, R., Tommasini, R., Van Herwegen, J., Vander Sande, M., Della Valle, E.,
Verborgh, R.: On the Semantics of TPF-QS towards Publishing and Querying RDF
Streams at Web-scale. In: Proceedings of the 14th International Conference on Se-
mantic Systems (2018).

130. Dell’Aglio, D., Della Valle, E., Calbimonte, J.-P., Corcho, O.: RSP-QL semantics: A
unifying query model to explain heterogeneity of RDF stream processing systems.
International Journal on Semantic Web and Information Systems (IJSWIS). 10, 17–
44 (2014).

131. Taelman, R., Vander Sande, M., Verborgh, R.: Versioned Querying with OSTRICH
and Comunica in MOCHA 2018. In: Proceedings of the 5th SemWebEval Challenge
at ESWC 2018 (2018).

132. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledge base. (2014).
133. Taelman, R., Vander Sande, M., Verborgh, R.: GraphQL-LD: Linked Data Querying

with GraphQL. In: Proceedings of the 17th International Semantic Web Conference:
Posters and Demos (2018).

134. Taelman, R., Takeda, H., Vander Sande, M., Verborgh, R.: The Fundamentals of Se-
mantic Versioned Querying. In: Proceedings of the 12th International Workshop on

170

Scalable Semantic Web Knowledge Base Systems co-located with 17th International
Semantic Web Conference (2018).

135. Wang, S., Schlobach, S., Klein, M.: Concept drift and how to identify it. Web Seman-
tics: Science, Services and Agents on the World Wide Web. 9, 247–265 (2011).

136. Afgan, E., Baker, D., Van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M.,
Chilton, J., Clements, D., Coraor, N., Eberhard, C., others: The Galaxy platform for
accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic
acids research. 44, W3–W10 (2016).

137. Mansour, E., Sambra, A.V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A.,
Aboulnaga, A., Berners-Lee, T.: A demonstration of the solid platform for social web
applications. In: Proceedings of the 25th International Conference Companion on
World Wide Web. pp. 223–226. International World Wide Web Conferences Steering
Committee (2016).

138. Buyle, R., Taelman, R., Mostaert, K., Joris, G., Mannens, E., Verborgh, R., Berners-
Lee, T.: Streamlining governmental processes by putting citizens in control of their
personal data. Proceedings of the 6th International Conference on Electronic Gover-
nance and Open Society: Challenges in Eurasia. (2019).

171

